فیلم های کامپوزیت پلی کاپرولاکتون/ چارچوب فلز ـ آلی روی(II): تهیه، شناسایی و بررسی ویژگی‌های جذب روغن و ضدباکتریایی

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

کامپوزیت­ های پلی ­کاپرولاکتون/چارچوب فلز-آلی روی(II) (PCL/x%ZIF-8, x=10, 30, 50) به روش ساده ­ی تبخیر حلال تهیه شدند. به منظور بررسی ساختار ترکیبات به دست آمده از روش ­های طیف­ سنجی فروسرخ (FT-IR پراش پرتو ایکس پودری (PXRD)، میکروسکوپ الکترونی روبشی (SEM) و آنالیز نقش ه­ای EDS عنصر روی استفاده شد. طیف­ های فروسرخ و الگوهای پراش پرتو ایکس، وجود ترکیب ZIF-8 در بستر پلیمری را تأیید کرد. تصویرهای SEM پراکنش نانوذره ­های ZIF-8 در فیلم ­های کامپوزیت­ ها را نشان داد. کامپوزیت­ های تهیه شده به دلیل اثر سینرژیک پلی ­کاپرولاکتون و نانوذره­ های ZIF-8 دارای کارآیی بیش­تری برای جذب روغن­ های گوناگونی (روغن آفتابگردان، روغن زیتون و روغن موتور) نسبت به فیلم پلیمر خالص بودند. کامپوزیت PCL/50%ZIF-8 بیش­ترین کارآیی را برای جذب روغن موتور نشان داد ( g/g5/9). سپس اثر ضدباکتریایی این نانوکامپوزیت ها در برابر باکتریEscherichia coli  مورد بررسی قرار گرفت. همچنین، نتیجه­ های آزمایش های ضدباکتریایی نشان داد که نانوکامپوزیت PCL/50%ZIF-8 اثر ضدباکتریایی چشمگیری علیه E. coli دارد. در نتیجه، این نانوکامپوزیت­ ها بواسطه­ ی دارا بودن اثر ضدباکتریایی قوی و ویژگی آبگریزی، پتانسیل مناسب برای کاربرد در زمینه­ ی حذف برخی از آلاینده­ ها و در نتیجه تصفیه آب را دارند.

کلیدواژه‌ها

موضوعات


[1] Król M., Rożek P., Sorption of Oil Products on the Synthetic Zeolite Granules, Mineralogia, 51: 1-7 (2020).
[2] Kukkar D., Rani A., Kumar V., Younis S.A., Zhang M., Lee S.-S., Tsang D.C., Kim K.-H., Recent Advances in Carbon Nanotube Sponge–Based Sorption Technologies for Mitigation of Marine Oil Spills, J. Colloid Interface Sci., 570: 411-422 (2020).
[4] Tang Y., Huang H., Guo X., Zhong C., Superhydrophobic Ether-Based Porous Organic Polymer-Coated Polyurethane Sponge for Highly Efficient Oil–Water Separation, Ind. Eng. Chem. Res., 59: 13228-13238 (2020).
[7] Zhang T., Zhang C., Zhao G., Li C., Liu L., Yu J., Jiao F., Electrospun Composite Membrane with Superhydrophobic-Superoleophilic for Efficient Water-in-Oil Emulsion Separation and Oil Adsorption, Colloids Surf. A: Physicochem. Eng. Asp., 602: 125158 (2020).
[8] Connolly B.M., Madden D.G., Wheatley A.E., Fairen-Jimenez D., Shaping the Future of Fuel: Monolithic Metal–Organic Frameworks for High-Density Gas Storage, J. Am. Chem. Soc., 142: 8541-8549 (2020).
[9] Pascanu V., González Miera G., Inge A.K., Martín-Matute B., Metal–Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective, J. Am. Chem. Soc, 141: 7223-7234 (2019).
[10] Gandara-Loe J., Souza B.E., Missyul A., Giraldo G., Tan J.-C., Silvestre-Albero J., MOF-Based Polymeric Nanocomposite Films as Potential Materials for Drug Delivery Devices in Ocular Therapeutics, ACS Appl. Mater. Interfaces, 12: 30189-30197 (2020).
[12] Zhang Y., Yuan S., Feng X., Li H., Zhou J., Wang B., Preparation of Nanofibrous Metal–Organic Framework Filters for Efficient Air Pollution Control, J. Am. Chem. Soc., 138: 5785-5788 (2016).
[13] Shanahan J., Kissel D.S., Sullivan E., PANI@UiO-66 and PANI@UiO-66-NH2 Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials, ACS Omega, 5: 6395-6404 (2020).
[14] Geng P., Cao S., Guo X., Ding J., Zhang S., Zheng M., Pang H., Polypyrrole Coated Hollow Metal–Organic Framework Composites for Lithium–Sulfur Batteries, J. Mater. Chem. A, 7: 19465-19470 (2019).
[15] Jamshidifard S., Koushkbaghi S., Hosseini S., Rezaei S., Karamipour A., Jafari rad A., Irani M., Incorporation of UiO-66-NH2 MOF into the PAN/Chitosan Nanofibers for Adsorption and Membrane Filtration of Pb(II), Cd(II) and Cr(VI) Ions From Aqueous Solutions, J. Hazar. Mater., 368: 10-20 (2019).
[16] Dou Y., Zhang W., Kaiser A., Electrospinning of Metal–Organic Frameworks for Energy and Environmental Applications, Adv. Sci., 7: 1902590 (2020).
[17] Vinogradov V.V., Drozdov A.S., Mingabudinova L.R., Shabanova E.M., Kolchina N.O., Anastasova E.I., Markova A.A., Shtil A.A., Milichko V.A., Starova G.L., Composites Based on Heparin and MIL-101 (Fe): the Drug Releasing Depot for Anticoagulant Therapy and Advanced Medical Nanofabrication, J. Mater. Chem. B, 6: 2450-2459 (2018).
[18] Huang G., Yang Q., Xu Q., Yu S.H., Jiang H.L., Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization, Angew. Chem., 128: 7505-7509 (2016).
[19] Abbasi Z., Shamsaei E., Fang X.-Y., Ladewig B., Wang H., Simple Fabrication of Zeolitic Imidazolate Framework ZIF-8/Polymer Composite Beads by Phase Inversion Method for Efficient oil Sorption, J. Colloid Interface. Sci., 493: 150-161 (2017).
[20] Gu J., Fan H., Li C., Caro J., Meng H., Robust Superhydrophobic/Superoleophilic Wrinkled Microspherical MOF@ rGO Composites for Efficient Oil–Water Separation, Angew. Chem., 131: 5351-5355 (2019).
[21] Rodríguez H.S., Hinestroza J.P., Ochoa-Puentes C., Sierra C.A., Soto C.Y., Antibacterial activity Against Escherichia coli of Cu-BTC (MOF-199) Metal-Organic Framework Immobilized Onto Cellulosic Fibers, J. Appl. Polym.Sci., 131: 40815 (2014).
[22] Shengxu Q., Lingjie S., Liwei S., Xu Z., Zhirong X., Jinghua Y., Shifang L., Metal-Organic Framework/Poly (ε-Caprolactone) Hybrid Electrospun Nanofibrous Membranes with Effective Photodynamic Antibacterial Activities, J. Photochem. Photobio. A., 400: 112626 (2020).
[23] Pan Y., Liu Y., Zeng G., Zhao L., Lai Z., Rapid Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals in an Aqueous System, Chem. Commun., 47: 2071-2073 (2011).
[24] Nwadiogbu J.O., Ajiwe V.I.E., Okoye P.A.C., Removal of Crude Oil From Aqueous Medium by Sorption on Hydrophobic Corncobs: Equilibrium and Kinetic Studies, J. Taibah Univ. Sci., 10: 56-63 (2016).
[25] Wyszogrodzka G., Marszalek B., Gil B., Dorozynski P., Metal-Organic Frameworks: Mechanisms of Antibacterial Action and Potential Applications, Drug Discov. Today, 21: 1009-1018 (2016).
[26] Miao W., Wang J., Liu J., Zhang Y., Self-Cleaning and Antibacterial Zeolitic Imidazolate Framework Coatings, Adv. Mater. Interfaces, 5: 1800167 (2018).
[27] Jayaramulu K., Datta K.K.R., Rösler C., Petr M., Otyepka M., Zboril R., Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil–Water Separation. Ang. Chem., 18;55(3): 1178–82 (2016).
[28] Meenarathi B., Chen H.-H., Chen P.-H., Anbarasan R., Synthesis and Characterization of Fluorescent Bio-Degradable Poly (ε-Caprolactone), Int. J. Plast. Technol., 18: 135-145 (2014).
[30] Kaur H., Mohanta G.C., Gupta V., Kukkar D., Tyagi S., Synthesis and Characterization of ZIF-8 Nanoparticles for Controlled Release of 6-Mercaptopurine Drug, J. Drug Del. Sci. Tech., 41: 106-112 (2017).
[31] Pillai P., Dharaskar S., Sasikumar S., Khalid M., Zeolitic Imidazolate Framework-8 Nanoparticle: A Promising Adsorbent for Effective Fluoride Removal from Aqueous Solution, Appl. Water Sci., 9: 150 (2019).
[33] Gautam S., Chou C.-F., Dinda A.K., Potdar P.D., Mishra N.C., Fabrication and Characterization of PCL/Gelatin/Chitosan Ternary Nanofibrous Composite Scaffold for Tissue Engineering Applications, J. Mater. Sci., 49: 1076-1089 (2014).
[34] Yang X., Qiu L., Luo X., ZIF-8 Derived Ag-Doped ZnO Photocatalyst with Enhanced Photocatalytic Activity. RSC Adv., 8(9): 4890–4894 (2018).
[35] Yang X., Chen J., Lai H., Hu J., Fang M., Luo X., MOF-Derived Co/ZnO@Silicalite-1 Photocatalyst with High Photocatalytic Activity. RSC Adv., 7(61): 38519–38525 (2017).
[36] Dorneanu P.P., Cojocaru C., Olaru N., P. Samoila, A. Airinei, Sacarescu L., Electrospun PVDF Fibers and a Novel PVDF/CoFe2O4 Fibrous Composite as Nanostructured Sorbent Materials for Oil Spill Cleanup, Appl. Surf. Sci., 424: 389-396 (2017).
[37] Sann E.E., Pan Y., Gao Z., Zhan S., Xia F., Highly Hydrophobic ZIF-8 Particles and Application for Oil-Water Separation, Sep. Purif. Technol., 206: 186-191 (2018).
[38] Tong G.-X., Du F.-F., Liang Y., Hu Q., Wu R.-N., Guan J.-G., Hu X., Polymorphous ZnO Complex Architectures: Selective Synthesis, Mechanism, Surface Area and Zn-Polar Plane-Codetermining Antibacterial Activity, J. Mater. Chem. B, 1: 454-463 (2013).
[39] Wang J., Wang Y., Zhang Y., Uliana A., Zhu J., Liu J., Van der Bruggen B., Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets Functionalized Thin Film Nanocomposite Membrane for Enhanced Antimicrobial Performance, ACS Appl. Mater. Interfaces, 8: 25508-25519 (2016).