پدیده ترشوندگی و برهم‌کنش‌های سطح سنگ و سیّال تزریقی هنگام سیلاب‌زنی شیمیایی در فرایند ازدیاد برداشت نفت

نوع مقاله : مروری

نویسنده

گروه مهندسی نفت، واحد امیدیه، دانشگاه آزاد اسلامی‌، امیدیه، ایران

چکیده

اهمیّت هیدروکربن‌ها در تولید مواد متنوع و گوناگون و همچنین تأمین بخش اعظم انرژی جهان در قرن گذشته به‌وسیلۀ هیدروکربن‌ها از یک طرف و عدم توانایی جایگزینی انرژی‌های تجدیدپذیر به‌دلیل رشد سریع نیاز جهانی به انرژی از طرف دیگر، باعث شده که مسئلۀ ازدیاد برداشت از ذخایر هیدروکربنی از کانون توجه پژوهشگران و متخصصان این صنعت خارج نشود. از روش‌های مهم ازدیاد برداشت نفت به‌ویژه در مخازن کربناته، تغییر ترشوندگی سنگ با استفاده از سیلاب‌زنی شیمیایی است که به تازگی مورد توجه پژوهشگران و مراکز تحقیقاتی زیادی قرار گرفته است. از آن جا که بخش اعظمی‌ از مخازن دنیا و همچنین کشور عزیزمان از جنس کربناته هستند، تغییر ترشوندگی سنگ مخزن از نفت‌دوستی به آب‌دوستی می‌‌تواند تأثیر چشمگیری در افزایش ضریب بازیافت نهایی مخزن داشته باشد. پژوهش حاضر مروری بر آخرین دستاوردهای ازدیاد برداشت پیشرفته از طریق سیلاب‌زنی شیمیایی در مخازن کربناته نفت‌دوست است که هدف آن­ها تغییر در خاصیّت ترشوندگی به‌سمت آب‌دوستی بوده است. باوجود پژوهش­ های گسترده‌ای که در زمینۀ مکانیسم‌های  تغییر ترشوندگی صورت گرفته، تاکنون همۀ جنبه‌های آن روشن و مشخص نشده است. بدیهی است بدون شناخت جامع و دقیق مکانیسم  فرایند، کنترل و بهبود آن میّسر نخواهد بود. در این مقاله مروری به بررسی مکانیسم‌ها و فعل‌وانفعال های حاکم در فرایندهای ازدیاد برداشت با استفاده از  سیلاب‌زنیِ با آبِ با شوریِ کم، سورفکتانت‌ها، پلیمرها و سیلاب‌زنی با استفاده از ذره ­های نانو یا همان نانوسیّال­ ها پرداخته شده است و تلاش بر این است تا برهمکنش‌های کانی‌های سطح سنگ مخزن و یون‌های موجود در سیّال تزریقی، اجزای نفت‌ خام و آب شور سازند، در فرایندهای ذکرشده مورد بررسی قرار گیرند.

کلیدواژه‌ها

موضوعات


[1] Rostami A., Zargar G., Takassi M., Moradi S., Jabari B., Evaluation of a New Agent for Wettability Alteration During Enhanced Oil Recovery, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(5): 333-341 (2019).
[2] علائی م.، افضلی تبار م.، رشیدی ع.م.، تعیین نانوساختار کربنی برتر برای سنتز سیلیکانانوهیبرید جهت ازدیاد برداشت از مخازن نفت، نشریه شیمی‌ و مهندسی شیمی‌ ایران، (4)40: 215-223 (1398).
[3] Roehl P.O., Choquette P.W., “Carbonate Petroleum Reservoirs”, Springer Science & Business Media, (2012).
[4] Agosta F, Alessandroni M, Antonellini M, Tondi E, Giorgioni M., From Fractures to Flow: A Field_Based Quantitative Analysis of an Outcropping Carbonate Reservoir, Tectonophysics, 490(3): 197-213 (2010).
[5] Lucia F.J., “Carbonate Reservoir Characterization”, Springer, (2007).
[7] Chilingar G.V., Yen T.F., Some Notes on Wettability and Relative Permeabilities of Carbonate Reservoir Rocks, II, Energy Sources, 7(1): 67-75 (1983).
[8] Cuiec L, “Rock/Crude_Oil Interactions and Wettability: An Attempt to Understand their Interrelation”, SPE Annual Technical Conference and Exhibition, Houston, Texas, 16-19 September, (1984).
[9] Treiber L.E., Owens W.W., A Laboratory Evaluation of the Wettability of Fifty Oil_ Producing Reservoirs, SPE J., 12(06): 531-540 (1972).
[10] Golabi E., Seyedeyn Azad F., Ayatollahi S., Hosseini N., Akhlaghi N., “Experimental Study of Wettability Alteration of Limestone Rock from Oil Wet to Water Wet by Applying Various Surfactants”, Society of Petroleum Engineers, Calgary, Alberta, Canada, 12-14 June, (2012).
[11] Golabi E., Azad F.S., Ayatollahi S.S., Hosseini S.N., Dastanian M., Experimental Study of Anionic and Cationic Surfactants Effects on Reduce of ift and Wettability Alteration in Carbonate Rock, Int. J. Sci. Eng. Res., 3(7): 1-8 (2012).
[12] Zaker S., Parvizi R., Hosseini S., Ghaseminejad E., Crude Oil Behavior during Injection of Solutions Containing MgSO4 in the Presence and Absence of CO2, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-18 (2020)
[13] Karimi M., Mahmoodi M., Niazi A., Al_Wahaibi Y., Ayatollahi S., Investigating Wettability Alteration During MEOR Process, A Micro/Macro Scale Analysis, Colloids and Surfaces B: Biointerfaces, 95: 129-136 (2012).
[14] Al_Khafaji A., Wen D., Quantification of Wettability Characteristics for Carbonates Using Different Salinities, Journal of Petroleum Science and Engineering, 173: 502-511 (2019).
[15] Hosseini S., Sabet M., Zeinolabedini Hezave A., Ayoub M.A., Elraies K.A., Effect of Combination of Cationic Surfactant and Salts on Wettability Alteration of Carbonate Rock, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-17 (2020).
[16] Shabib_Asl A., Abdalla Ayoub M., Abdalla Elraies K., Hosseini S., Hematpour H., Investigation into the Effects of Crude Oil on Foam Stability by using Different Low Salinity Water, Indian Journal of Science and Technology, 9(35): (2016)
[17] Hosseini S.N., Shuker M.T., Sabet M., Zamani A., Hosseini Z., Shabib_Asl A., Brine Ions and Mechanism of Low Salinity Water Injection in Enhanced Oil Recovery: A Review, Research Journal of Applied Sciences, Engineering and Technology, 11(11): 1257-1264 (2015).
[18] Golabi E., Sogh S.R.M.P., Hosseini S.N., Gholamzadeh M.A., Biosurfactant Production by Microorganism for Enhanced Oil Recovery, Int. J. Sci. Eng. Res., 3(7): 1-6 (2012).
[19] Song J., Zeng Y., Wang L., Duan X., Puerto M., Chapman W.G., Hirasaki G.J., Surface Complexation Modeling of Calcite Zeta Potential Measurements in Brines with Mixed Potential Determining Ions (Ca2+, CO32−, Mg2+, SO42−) for Characterizing Carbonate Wettability, Journal of Colloid and Interface Science, 506: 169-179 (2017).
[21] Aminian A., Zarenezhad B., Wettability Alteration in Carbonate and Sandstone Rocks due to Low Salinity Surfactant Flooding, Journal of Molecular Liquids, 275: 265-280 (2018)
[22] Garrett H.E., “Surface Active Chemicals”, Elsevier, (2013).
[23] Huh C., Lange E.A., Cannella W.J., Polymer Retention in Porous Media, SPE/DOE Enhanced Oil Recovery, Symposium, Society of Petroleum Engineers, (1990).
[24] Hosseini H., Norouzi S., Schaffie M., Wettability Alteration of Carbonate Rocks via Magnetic Fields Application, Journal of Petroleum Science and Engineering, 172: 280-287 (2018).
[25] Hajibagheri F., Lashkarbolooki M., Ayatollahi S., Hashemi A, The Synergic Effects of Anionic and Cationic Chemical Surfactants, and Bacterial Solution on Wettability Alteration of Carbonate Rock, An Experimental Investigation, Colloids Surf A: Physicochem. Eng. Asp., 513: 422-429 (2017).
[26] Rashid S., Mousapour M.S., Ayatollahi S., Vossoughi M., Beigy A.H, Wettability Alteration in Carbonates during “Smart Waterflood”: Underlying Mechanisms and the Effect of Individual Ions, Colloids Surf A: Physicochem. Eng. Asp., 487: 142-153 (2015).
[27] Ding H., Rahman S., Experimental and Theoretical Study of Wettability Alteration during Low Salinity Water Flooding_an State of the Art Review, Colloid. Surf A: Physicochem. Eng. Asp., 520: 622-639 (2017).
[28] Al_Attar H.H., Mahmoud M.Y., Zekri A.Y., Almehaideb R., Ghannam M., Low_ Salinity Flooding in a Selected Carbonate Reservoir: Experimental Approach, J. Pet. Explor. Produc. Technol., 3(2): 139-149 (2013).
[29] Kasmaei K.A., Rao D.N., Is Wettability Alteration the Main Cause for Enhancedrecovery in Low_Salinity Waterflooding?, SPE Reserv. Eval. Eng., 18(02): 228-235 (2015).
[30] Zhang P., Tweheyo M.T., Austad T., Wettability Alteration and Improved Oil Recovery by Spontaneous Imbibition of Seawater into Chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42-, Colloids Surfaces A: Physicochemical and Engineering Aspects, 301: 199-208 (2007).
[31] Karimi M., Al_Maamari R.S., Ayatollahi S., Mehranbod N., Mechanistic Study of Wettability Alteration of Oil_Wet Calcite: The Effect of Magnesium Ions in the Presence and Absence of Cationic Surfactant, Colloids Surf A: Physicochem. Eng. Asp., 482: 403-415 (2015).
[32] Karimi M., Al_Maamari R.S., Ayatollahi S., Mehranbod N., Impact of Sulfate Ions on Wettability Alteration of Oil_Wet Calcite in the Absence and Presence of Cationic Surfactant, Energy Fuels, 30(2): 819-829 (2016).
[34] Nasralla R.A., Bataweel M.A., Nasr_El_Din H.A., Investigation of Wettability Alteration by Low Salinity Water, In Offshore Europe, Aberdeen, UK, (2011).
[35] Mahani H., Keya A.L., Berg S., Bartels W.B., Nasralla R., Rossen W.R., Insights into the Mechanism of Wettability alteration by Low_Salinity Flooding (LSF) in Carbonates, Energy and Fuels, 29: 1352-1367 (2015).
[36] Alotaibi M.B., Nasralla R.A., Nasr_El_Din H.A., Wettability Studies using Low_Salinity Water in Sandstone Reservoirs, SPE Reserv. Eval. Eng., 14(6): 713–725 (2011).
[37] Mahani H., Keya A.L., Berg S., Bartels W._B., Nasralla R., Rossen W.R., Insights into the Mechanism of Wettability Alteration by Low_Salinity Flooding (LSF) in Carbonates, Energy & Fuels, 29: 1352–1367 (2015).
[38] Ding H., Rahman S., Experimental and Theoretical Study of Wettability Alteration during Low Salinity Water Flooding_an State of the Art Review, Colloids Surfaces A: Physicochemical and Engineering Aspects, 520: 622–639 (2017).
[39] Koleini M.M., Mehraban M.F., Ayatollahi S., Effects of Low Salinity Water on Calcite/Brine Interface: A Molecular Dynamics Simulation Study, Colloids Surfaces A: Physicochemical and Engineering Aspects, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 537: 61–68 (2018).
[41] Brady P.V., Thyne G., Functional Wettability in Carbonate Reservoirs, Energy & Fuels, 30: 9217–9225 (2016).
[43] Derjaguin B., Landau L., Acta Physicoshim. U.R.S.S, 14: 633 (1941).
[44] Verwey E., Overbeek J., Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, (1948).
[45] Xie Q., Liu Y., Wu J., Liu Q., Ions Tuning Water Flooding Experiments and Interpretation by Thermodynamics of Wettability, Journal of Petroleum Science and Engineering, (2014).
[46] Rahimi A., Honarvar B., Safari M., The Role of Salinity and Aging Time on Carbonate Reservoir in Low Salinity Seawater and Smart Seawater Flooding, Journal of Petroleum Science and Engineering, (2019).
[48] Shirazi M., Farzaneh J., Kord S., Tamsilian Y., Smart Water Spontaneous Imbibition into Oil_Wet Carbonate Reservoir Cores: Symbiotic and Individual Behavior of Potential Determining Ions, Journal of Molecular Liquids, (2019).
[51] Subhash C., Ayirala ., Abdullah B., Amani A., Abdulkareem A., Dilute Surfactants for Wettability Alteration and Enhanced Oil Recovery in Carbonates, Journal of Molecular Liquids, 285: 707–715 (2019).
[52] Allen F.J., Griffin L., Alloway R.M., Gutfreund P., Lee S.Y., Truscott C.L., Welbourn R.J.L., Wood M.H., Clarke S.M., An Anionic Surfactants on an Anionic Substrate: Monovalent Cation Binding, Langmuir, 33(32): 7881-7888 (2017).
[53] Purswani P., Tawfik M.S., Karpyn Z.T., Factors and Mechanisms Governing Wettability Alteration by Chemically Tuned Water Flooding: A Review, Energ. Fuel., 31(8): 7734-7745 (2017).
[55] Zhang P., Tweheyo M.T., Austad T., Wettability Alteration and Improved Oil Recovery in Chalk: The Effect of Calcium in the Presence of Sulfate, Energy and Fuels, 20: 2056–2062 (2006). doi:10.1021/ef0600816.
[56] Fathi S.J., Austad T., Strand S., Water_based Enhanced Oil Recovery (EOR) by “Smart Water”: Optimal Ionic Composition for EOR in Carbonates, Energy and Fuels, 25: 5173–5179 (2011). doi:10.1021/ef201019k.
[57] Yildiz H.O., Morrow N.R., Effect of Brine Composition on Recovery of Moutray Crude Oil by Waterflooding, Journal of Petroleum science and Engineering, 14: 159-168 (1996). doi: https://doi.org/10.1016/0920_4105(95)00041_0.
[59] Kobayash K., Liang Y., Murata S., Matsuoka T., Takahashi S., Amano K-i., Nishi N., Sakka T., Stability Evaluation of Cation Bridging on Muscovite Surface for Improved Description of Ion-Specific Wettability Alteration, J. Phys. Chem. C., 121(17): 9273-9281 (2017).
[61] Khaledialidusti R., Kleppe J., Significance of the Kinetics of Minerals in Reactivetransport Problems Geochemical Interactions, SPE Eur. Featur. 79th EAGE Conf. Exhib. Paris, Fr. 12–15 June. SPE-185844-MS, 12–15 (2017). doi: https://doi.org/10.2118/185844-MS.
[62] Sari A., Xie Q., Chen Y., Saeedi A., Pooryousefy E., Drivers of Low Salinity Effect in Carbonate Reservoirs, Energ. Fuel., 31(9): 8951-8958 (2017).
[64] Alvim R.S., Babilonia O.A., Celaschi Y.M., Miranda C.R., Nanoscience Applied to Oil Recovery and Mitigation: A Multiscale Computational Approach, MRS Advances, 2: 477-482 (2017).
[66] Ju B., Fan T., Ma M., Enhanced Oil Recovery by Flooding with Hydrophilic Nanoparticles, China Particuology, 4: 41-46 (2006).
[68]  Amanullah M., Al_Tahini A.M., Nano_Technology_its Significance in Smart Fluid Development for Oil and Gas Field Application, In SPE Saudi Arabia Section Technical Symposium, Society of Petroleum Engineers (2009).
[69] Cheraghian G., Nezhad S.S.K., Kamari M., Hemmati M., Masihi M., Bazgir S., Adsorption Polymer on Reservoir Rock and Role of the Nanoparticles, Clay and SiO2, Int. Nano Letters, 4: 1-8 (2014).
[70] Sabet M., Hosseini S.N., Zamani A., Hosseini Z., Soleimani H., Application of Nanotechnology for Enhanced Oil Recovery: A Review. Defect and Diffusion, Forum, 367: 149–156 (2016). https://doi.org/10.4028/www.scientific.net/ddf.367.149
[71] Tajmiri M., Ehsani M., Wettability Alteration of Oil_ Wet and Water_Wet of Iranian Heavy Oil Reservoir by CuO NanoparticlesIranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(4): 171-182 (2017).
[73] Nwidee L.N., Al-Anssari S., Barifcani A., Sarmadivaleh M., Maxim L., Iglauer S., Nanoparticles Influence on Wetting Behaviour of Fractured Limestone Formation, J. Petroleum Sci. Engin., 149: 782-788 (2017).
[74] Ko S., Huh C., Use of Nanoparticles for Oil Production Applications, 172: 97-114 (2019).
[75] Radnia H., Rashidi A., Nazar A.R.S., Eskandari M.M., Jalilian M., A Novel Nanofluid based on Sulfonated Graphene for Enhanced Oil Recovery, Journal of Molecular Liquids, 271: 795-806 (2018).
[76] Shahzad Kamal M., Adewunmi A.A., Sultan A.S., Al-Hamad M.F., Mehmood U., Recent Advances in Nanoparticles Enhanced Oil Recovery: Rheology, Interfacial Tension, Oil Recovery, and Wettability Alteration, Journal of Nanomaterials, 2473175 (2017).
[77] Ahmadi P., Asaadian H., Khadivi A., Kord S., A New Approach for Determination of Carbonate Rock Electrostatic Double Layer Variation Towards Wettability Alteration, Journal of Molecular Liquids, 275: 682-698 (2019).
[78] Seid Mohammadi M., Moghadasi J., Naseri S., An Experimental Investigation of Wettability Alteration in Carbonate Reservoir using γ_Al2O3 Nanoparticles, Iranian Journal of Oil & Gas Science and Technology, 3(2): 18-26 (2014).
[79] Salem Ragab A.M., Hannora A.E., A Comparative Investigation of Nano Particle Effects for Improved Oil Recovery–Experimental Work, in SPE Kuwait Oil and Gas Show and Conference Society of Petroleum Engineers, (2015).
[81] Hendraningrat L., Torsæter O., Understanding Fluid_Fluid and Fluidrock Interactions in the Presence of Hydrophilic Nanoparticles at Various Conditions, in SPE Asia Pacific Oil & Gas Conference and Exhibition Society of Petroleum Engineers, (2014).
[82] Aghajanzadeh M.R., Ahmadi P., Sharifi M., Riazi M., Wettability Alteration of Oil_Wet Carbonate Reservoir using Silica_based Nanofluid: An Experimental Approach, Journal of Petroleum Science and Engineering (2019). , doi: https://doi.org/10.1016/j.petrol.2019.03.059.
[85] Giraldo J., Benjumea P., Lopera S., Cortés F.B., Ruiz M.A., Wettability Alteration of Sandstone Cores by Alumina_based Nanofluids, Energy & Fuels, 27(7): 3659-3665 (2013).
[86] Zaid H.M., Latiff A., Rasyada N., Yahya N., The Effect of Zinc Oxide and Aluminum Oxide Nanoparticles on Interfacial Tension and Viscosity of Nanofluids for Enhanced Oil Recovery, Advanced Mater. Res., 1024: 56-59 (2014).
[87] Esfandyari Bayat A., Junin R., Samsuri A., Piroozian A., Hokmabadi M., Impact of Metal Oxide Nanoparticles on Enhanced Oil Recovery from Limestone Media at Several Temperatures, Energy & Fuels, 28: 6255-6266 (2014).
[88] Esmaeilzadeh P., Fakhroueian Z., Nadafpour M., Bahramian A., Application of ZnO Nanostructures in Improvement of Effective Surface Parameters in EOR Process, J. Nano Res., 26: 9-16 (2014).
[90] Li S., Hendraningrat L., Torsaeter O., Improved Oil Recovery by Hydrophilic Silica Nanoparticles Suspension: 2 Phase Flow Experimental Studies, in IPTC 2013: International Petroleum Technology Conference, (2013).
[91] Zargartalebi M., Barati N., Kharrat R., Influences of Hydrophilic and Hydrophobic Silica Nanoparticles on Anionic Surfactant Properties: Interfacial and Adsorption Behaviors, J. Petroleum Sci. Engin., 119: 36-43 (2014).
[92] Zargartalebi M., Kharrat R., Barati N., Enhancement of Surfactant Flooding Performance by the use of Silica Nanoparticles, Fuel, 143: 21-27 (2015).
[94] Joonaki E., Ghanaatian S., The Application of Nanofluids for Enhanced Oil Recovery: Effects on Interfacial Tension and Coreflooding Process, Petroleum Sci. Technol., 32: 2599-2607 (2014).
[95] Nwidee L.N., Al_Anssari S., Barifcani A., Sarmadivaleh M., Maxim L., Iglauer S., Nanoparticles Influence on Wetting Behaviour of Fractured Limestone Formation, J. Petroleum Sci. Engin., 149: 782-788 (2017).
[96] Dehghan Monfared A., Ghazanfari M.H., Jamialahmadi M., Helalizadeh A., Potential Application of Silica Nanoparticles for Wettability Alteration of Oil–Wet Calcite: Amechanistic Study, Energy & Fuels, 30(5): 3947-3961 (2016).
[97] Monfared A.D., Ghazanfari M.H., Jamialahmadi M., Helalizadeh A., Adsorption of Silica Nanoparticles onto Calcite: Equilibrium, Kinetic, Thermodynamic and DLVO Analysis, Chemical Engineering Journal, 281: 334-344 (2015).
[99] Giraldo J., Benjumea P., Lopera S., Cortés F.B., Ruiz M.A., Wettability Alteration of Sandstone Cores by Alumina_Based Nanofluids, Energy Fuels, 27: 3659-3665 (2013).
[100] Al_Anssari S., Barifcani A., Wang S., Maxim L., Iglauer S., Wettability Alteration of Oil_Wet Carbonate by Silica Nanofluid, J. Colloid Interface Sci., 461: 435-442 (2016).
[101] Rezvani H., Riazi M., Tabaei M., Kazemzadeh Y., Sharifi M., Experimental Investigation of Interfacial Properties in the EOR Mechanisms by the Novel Synthesized Fe3O4@Chitosan Nanocomposites, Colloids and Surfaces, A: Physicochemical Eng. Aspects, 544: 15-27 (2018).
[102] Shalbafana M., Esmaeilzadeha F., Vakili_Nezhaad R., Enhanced Oil Recovery by Wettability Alteration using Iron Oxide Nanoparticles Covered with PVP or SDS, Colloids and Surfaces A, 607: 125509 (2020). https://doi.org/10.1016/j.colsurfa.2020.125509
[103] Nowrouzi I., Khaksar Manshad A., Mohammadi A.H., Effects of TiO2, MgO and γ_Al2O3 Nano_Particles on Wettability Alteration and Oil Production under Carbonated Nano_Fluid Imbibition in Carbonate Oil Reservoirs, Fuel, 259: 116110 (2020). https://doi.org/10.1016/j.fuel.2019.116110
[104] Pope G.A., “Overview of Chemical EOR”, in: Casper EOR Workshop, Texas University, Austin, (2007).
[105] Sorbie K.S., “Polymer_Improved Oil Recovery”, CRC Press, Boca Raton, Florida, (1991).
[106] US Department of Energy website Available Online <http:// www. fossil.energy.gov/programs/oilgas/eor/index.html>, 2008 (accessed 08.02.08).
[108] Sorbie K., Enhanced Oil Recovery, Prentice Hall, Englewood Cliff, New Jersey (1991).
[109] Sheng, J.J., Leonhardt, B., Azri, N., Status of polymer_flooding technology, J. Can. Pet. Technol., 54(2): 116-126 (2015).
[110] Needham R.B., Perez C.A.R., Hidrovo C., Polymer Flooding Review, J. Petrol. Technol, 39(12): 1503-1507 (1987).
[111] Sheng J.J., “Modern Chemical Enhanced Oil Recovery: Theory and Practice”, Gulf Professional Publishing (2011).
[112] Lee Y., Lee W., Jang Y., Sung W., Oil Recovery by Low_Salinity Polymer Flooding in Carbonate Oil Reservoirs, Journal of Petroleum Science and Engineering, (2019). doi: https:// doi.org/10.1016/j.petrol.2019.106211.
[113] Choi S.K., Sharama M.M., Bryant S.L., Huh C., pH_Sensitive Polymers for Novel Conformance Control and Polymerflood Applications, In: SPE International Symposium on Oilfield Chemistry, (2009).
[115] Li Z. Ayirala S., Mariath R., AlSofi A., Xu Z., Yousef A., Microscale Effects of Polymer on Wettability Alteration in Carbonates, SPE 200251 (2020).
[116] Khalilinezhad S.S., Cheraghian G., Roayaei E., Tabatabaee H., Karambeigi M.S., Improving Heavy Oil Recovery in the Polymer Flooding Process by Utilizing Hydrophilic Silica Nanoparticles, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1- 10 (2017).
[117] Khorsandi S., Qiao C., Johns R.T., Displacement Efficiency for Low-Salinity Polymer Flooding Including Wettability Alteration, SPE J., 22(2): 417-430 (2017).
[118] Unsal E., Ten Berge A.B.G.M., Wever D.A.Z., Low Salinity Polymer Flooding: Lower Polymer Retention and Improved Injectivity, J. Pet. Sci. Eng., 163: 671-682 (2018).
[119] Derkani M.H., Fletcher A.J., Abdallah W., Sauerer B., Anderson J., Zhang Z.J., Low Salinity Waterflooding in Carbonate Reservoirs: Review of Interfacial Mechanisms, Colloids Interfaces, 2(2): 43 (2018).
[120] Jalilian M., Pourafshary P., Sola B.S., Kamari M., Optimization of Smart Water Chemical Composition for Carbonate Rocks through Comparison of Active Cations Performance, J. Energ. Resour. Technol., 139(6): 9 (2017).
[121] Khaledialidusti R., Kleppe J., Significance of Geochemistry in Single-Well Chemicaltracer Tests by Coupling a Multiphase-Flow Simulator to the Geochemical Package, SPE Journal., 23: 1126–1144 (2018). doi:10.2118/189971-PA.
[122] Khaledialidusti R., Kleppe J., Surface-Charge Alteration at the Carbonate/Brine Interface during Single-Well Chemical-Tracer Tests: Surface-Complexation Model, SPE Journal, 23: 14 (2018). doi:10.2118/191356-PA.
[123] Brady P.V., Thyne G., Functional Wettability in Carbonate Reservoirs, Energy & Fuels, 30(11): 9217-9225 (2016).
[124] Xie Q., Chen Y., Sari A., Pu W., Saeedi A.; Liao X., A pH-Resolved Wettability Alteration: Implications for CO2-Assisted EOR in Carbonate Reservoirs, Energy & Fuels, 31(12): 13593-13599 (2017).
[125] Chen Y., Xie Q., Sari A., Brady P.V., Saeedi A., Oil/Water/Rock Wettability: Influencing Factors and Implications for Low Salinity Water Flooding in Carbonate Reservoirs, Fuel, 215: 171-177 (2018).
[126] Hosseini S.N., Shuker M.T., Hosseini Z., Tomocene T.J., Shabib_Asl A., Sabet M., The Role of Salinity and Brine Ions in Interfacial Tension Reduction While Using Surfactant for Enhanced Oil Recovery, Research Journal of Applied Sciences, Engineering and Technology, 9(9): 722-726 (2015).
[127] Alshakhs M.J., Kovscek A.R., Understanding the Role of Brine Ionic Composition on Oil Recovery by Assessment of Wettability from Colloidal Forces, Advances in Colloid and Interface Science, 233: 126-138 (2016).
[128] Austad T., Strand S., Madland M., Puntervold T., Korsnes R., “Seawater in Chalk: An EOR and Compaction Fluid”, SPE International Petroleum Technology Conference, Dubai, U.A.E (2007).
[129] Zhang P., Tweheyo M.T., Austad T., Wettability Alteration and Improved Oil Recovery in Chalk: The Effect of Calcium in the Presence of Sulfate, Energy and Fuels, 20: 2056-2062 (2006).
[130] Boumedjane M., Karimi M., Al_Maamari R.S., Aoudia M., Experimental Investigation of the Concomitant Effect of Potential Determining Ions Mg2+/SO42− and Ca2+/SO42− on the Wettability Alteration of Oil_Wet Calcite Surfaces, Journal of Petroleum Science and Engineering, 179: 574-585 (2019).
[131] Al_Busaidi I.K., Al_Maamari R.S., Karimi M., Naser J., Effect of Different Polar Organic Compounds on Wettability of Calcite Surfaces, Journal of Petroleum Science and Engineering, 180: 569-583 (2019).
[132] Buckley J., Liu Y., Some Mechanisms of Crude Oil/Brine/Solid Interactions, J. Pet. Sci. Eng., 20(3-4): 155-160 (1998).
[133] Gomari K.R., Hamouda A., Effect of Fatty Acids, Water Composition and pH on the Wettability Alteration of Calcite Surface, J. Pet. Sci. Eng., 50(2): 140-150 (2006).
[134] Morrow N.R., Wettability and Its Effect on Oil Recovery, J. Pet. Technol., 42(12): 1476-1484 (1990).
[135] Lashkarbolooki M., Riazi M., Hajibagheri F., Ayatollahi S., Low Salinity Injection into Asphaltenic-Carbonate Oil Reservoir, Mechanistical Study, Journal of Molecular Liquids, 216: 377-386 (2016).
[136] قجاوند ح.، نورمحمد ع.ر.، ازدیاد برداشت نفت از سنگ‌های کربناته به‌وسیلۀ آشام خودبه‌خودی محلول‌های سورفکتانت، نشریه شیمی‌ و مهندسی شیمی‌ ایران، (3)32: 69 تا 78 (1392).
[138] Sayyouh M.H., Hemeida A.M., Al_Blehed M.S., Desouky S.M., Role of Polar Compounds in Crude Oils on Rock Wettability, Journal of Petroleum Science and Engineering, 6(3): 225-233 (1991).
[140] Ahmadi P., Asaadian H.R., Khadivi A., Kord Sh., A New Approach for Determination of Carbonate Rock Electrostatic Double Layer Variation Towards Wettability Alteration, Journal of Molecular Liquids, 275(1): 682-698 (2019).
[141] Zhang P., Austad T., The Relative Effects of Acid Number and Temperature on Chalk Wettability, In: SPE International Symposium on Oilfield Chemistry, Society of Petroleum Engineers, (2005).
[142] Fathi S.J., Austad T., Strand S., “Smart Water” as a Wettability Modifier in Chalk: the Effect of Salinity and Ionic Composition, Energy Fuels, 24(4): 2514-2519 (2010).
[143] Fathi S.J., Austad T., Strand S., Effect of Water_Extractable Carboxylic Acids in Crude Oil on Wettability in Carbonates, Energy Fuels, 25(6): 2587-2592 (2011).
[144] Sohal M.A., Thyne G., Sogaard E.G., Review of Recovery Mechanisms of Ionically Modified Waterflood in Carbonate Reservoirs, Energ. Fuel., 30(3): 1904-1914 (2016).
[146] Purswani P., Tawfik M.S., Karpyn Z.T., Factors and Mechanisms Governing Wettability Alteration by Chemically Tuned Water Flooding, A Review, Energ. Fuel., 31(8): 7734-7745 (2017).
[148] Gupta R., Smith G.G., Hu L., Willingham T., Lo Cascio M., Shyeh J.J., Harris C.R., “Enhanced Waterflood for Carbonate Reservoirs_Impact of Injection Water Composition”, SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 25-28 September, (2011).
[149] Kobayashi K., Liang Y., Murata S., Matsuoka T., Takahashi S., Amano K_i., Nishi N., Sakka T., Stability Evaluation of Cation Bridging on Muscovite Surface for Improved Description of Ion_Specific Wettability Alteration, J. Phys. Chem. C., 121(17): 9273-9281 (2017).
[150] Shehata A.M., Alotaibi M.B., Nasr_El_Din H.A., Water Flooding in Carbonate Reservoirs: Does the Salinity Matter, SPE Res. Eval. & Eng., 17(3): 170254 (2014).
[151] Shariatpanahi S.F., Strand S., Austad T., Initial Wetting Properties of Carbonate Oil Reservoirs: Effect of the Temperature and Presence of Sulfate in Formation Water, Energy & Fuels., 25: 3021-3028 (2011).
[152] Alotaibi M.B., Yousef A.A., The Role of Individual and Combined Ions in Waterflooding Carbonate Reservoirs: Electrokinetic Study, SPE Res. Eval. & Eng., 20(1): 77-86 (2015).
[153] Kawasaki K., Nagata_Cho, Chiyoda_Ku, Electrotechnical Laboratory, on the Variation of Wettability of Organic Solids in Contact with Water, Journal of Colloid Science., 17: 169-177 (1962).
[154] Austad T., Shariatpanahi S., Strand S., Black J., Webb K., Condition for a Low Salinity Enhanced Oil Recovery [EOR] Effect in Carbonate Oil Reservoirs, Energy & Fuels., 26: 569-575 (2012).
[155] Ershadi M., Alaei M., Rashidi A., Ramazani A., Khosravani S., Carbonate and Sandstone Reservoirs Wettability Improvement without using Surfactants for Chemical Enhanced Oil Recovery [C_EOR], Fuel., 153: 408-415 (2015).