اثر اندازه نانوذره‌های آهن بر ساختار و فعالیت لیزوزیم سفیده تخم مرغ

نوع مقاله : علمی-پژوهشی

نویسندگان

1 مرکز تحقیقات بیوشیمی و بیوفیزیک، دانشگاه تهران، تهران، ایران

2 دانشکده شیمی، دانشگاه رازی کرمانشاه، کرمانشاه، ایران

3 مرکز تحقیقات علوم دارویی، پژوهشکده سلامت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

چکیده

نانوذره‌های اکسید آهن سوپرپارامغناطیس (SPIONs) با ترکیب مولکولی Fe3O4 برای برهمکنش‌های پروتئینی و مطالعه دارورسانی در نظر گرفته شد. با توجه به این که SPIONs  در نانوپزشکی و سامانه‌های دارورسانی نقش چشمگیری دارند، بررسی برهمکنش بین SPIONs و یک پروتئین مدل و تغییرهای ساختاری و عملکردی آن می‌تواند در پژوهش‌های علمی روشنگر باشد. SPIONs با اندازه­ های 20، 50 و 100 نانومتر انتخاب شدند. مطالعه طیف‌سنجی UV-visible، برهمکنش بین پروتئین-نانوذره را نشان داد. دورنگ نمایی دورانی به منظور اندازه‌گیری تغییرها در ساختار ثانویه لیزوزیم در برهمکنش با SPIONs  استفاده شد و کاهش چشمگیری در ساختارهای مارپیچ پروتئین مشاهده شد. تجزیه و تحلیل خاموشی فلورسانس پروتئین به منظور درک ماهیت برهمکنش پروتئین-نانوذره مورد استفاده قرار گرفت.  برهمکنش SPIONs و لیزوزیم ترکیبی از خاموش شدن دینامیک و استاتیک را نشان دادند. فعالیت و ویژگی‌های آنزیمی لیزوزیم متصل به SPIONs در مقایسه با لیزوزیم آزاد اندازه­ گیری شد. فعالیت به طور چشمگیری در هر اندازه از SPIONs کاهش یافته است، اما Km تحت تاثیر شرایط گوناگون واکنش تغییر کرده است.

کلیدواژه‌ها

موضوعات


[1] Larsericsdotter H., Oscarsson S., Buijs J., Thermodynamic Analysis of Proteins Adsorbed on Silica Particles: Electrostatic Effects, Journal of colloid and interface science, 237(1): 98-103 (2001).
[2] Billsten P., Carlsson U., Jonsson B.H., Olofsson G., Höök F., Elwing H., Conformation of Human Carbonic Anhydrase II Variants Adsorbed to Silica Nanoparticles, Langmuir, 15(19): 6395-6399 (1999).
[4] Roach P., Farrar D., Perry C.C., Interpretation of Protein Adsorption: Surface-Induced Conformational Changes, Journal of the American Chemical Society, 127(22): 8168-8173 (2005).
[5] Janin J., Bahadur R.P., Chakrabarti P., Protein–Protein Interaction and Quaternary Structure, Quarterly reviews of biophysics, 41(2): 133-180 (2008).
[6] Degterev A., Lugovskoy A., Cardone M., Mulley B., Wagner G., Mitchison T., Yuan J., Identification of Small-Molecule Inhibitors of Interaction Between the BH3 Domain and Bcl-xL, Nature cell biology, 3(2): 173-182 (2001).
[7] Shang W., Nuffer J.H., Muñiz‐Papandrea V.A., Colón W., Siegel R.W., Dordick J.S., Cytochrome c on Silica Nanoparticles: Influence of Nanoparticle Size on Protein Structure, Stability, and Activity, Small, 5(4): 470-476 (2009).
[8] Kashanian F., Habibi-Rezaei M., Bagherpour A.R., Seyedarabi A., Moosavi-Movahedi A.A., Magnetic Nanoparticles as Double-Edged Swords: Concentration-Dependent Ordering or Disordering Effects on Lysozyme, RSC advances, 7(86): 54813-54822 (2017).
[9] Akhtar Kh., Shah A., Zubair N., Javed K., Chemical Dynamics of Monodispersed Iron Oxide Nanoparticles. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(5): 21-30 (2019).
[10] Fleming A., On a Remarkable Bacteriolytic Element Found in Tissues and Secretions, Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 93(653): 306-317 (1922).
[12] Tagashira A., Nishi K., Sugahara T., Lysozyme from hen Egg White Ameliorates Lipopolysaccharide-Induced Systemic Inflammation in Mice, Cytotechnology, 71(2): 497-506 (2019).
[13] Takahashi M., Okakura Y., Takahashi H., Imamura M., Takeuchi A., Shidara H., Kuda T., Kimura B., Heat-Denatured Lysozyme Could be A Novel Disinfectant for Reducing Hepatitis A Virus and Murine Norovirus on Berry Fruit, Int J Food Microbiol, 266: 104-108 (2018).
[14] Kuehner D.E., Engmann J., Fergg F., Wernick M., Blanch H.W., Prausnitz J.M., Lysozyme Net Charge and Ion Binding in Concentrated Aqueous Electrolyte Solutions, The Journal of Physical Chemistry B, 103(8): 1368-1374 (1999).
[15] Swaminathan R., Ravi V.K., Kumar S., Kumar M.V., Chandra N., Lysozyme: A Model Protein for Amyloid Research, Advances in protein chemistry and structural biology, 84: 63-111 (2011).
[16] Mohamadpour M., Pirdashti M., Shahrokhi B., Rostami A.A., Response Surface Methodology for the Evaluation of Lysozyme Partitioning in Poly (Vinyl Pyrrolidone) and Potassium Phosphate Aqueous Two-Phase System. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(5): 197-208 (2019).
[17] Lesnierowski G., Kijowski J., Lysozyme, Bioactive egg compounds, 33-42 (2007).
[18] Ghosh A., Brinda K., Vishveshwara S., Dynamics of Lysozyme Structure Network: Probing the Process of Unfolding, Biophysical journal, 92(7): 2523-2535 (2007).
[19] Knubovets T., Osterhout J.J., Connolly P.J., Klibanov A.M., Structure, Thermostability, and Conformational Flexibility of Hen Egg-White Lysozyme Dissolved in Glycerol, Proceedings of the National Academy of Sciences, 96(4): 1262-1267 (1999).
[20] Pepys M.B., Hawkins P.N., Booth D.R., Vigushin D.M., Tennent G.A., Soutar A.K., Totty N., Nguyen O., Blake C.C., Terry C.J., Feest T.G., Human Lysozyme Gene Mutations cause Hereditary Systemic Amyloidosis, Nature, 362(6420): 553-557 (1993).
[22] Kwok P.C., Tunsirikongkon A., Glover W., Chan H.K., Formation of Protein Nano-Matrix Particles with Controlled Surface Architecture for Respiratory Drug Delivery, Pharm Res, 28(4): 788-796 (2011).
[23] Peng Z.G., Hidajat K., Uddin M.S., Adsorption and Desorption of Lysozyme on Nano-Sized Magnetic Particles and its Conformational Changes, Colloids Surf B Biointerfaces, 35(3-4): 169-174 (2004).
[24] Shang W., Nuffer J.H., Dordick J.S., Siegel R.W., Unfolding of Ribonuclease A on Silica Nanoparticle Surfaces, Nano letters, 7(7): 1991-1995 (2007).
[25] Vertegel A.A., Siegel R.W., Dordick J.S., Silica Nanoparticle Size Influences the Structure and Enzymatic Activity of Adsorbed Lysozyme, Langmuir, 20(16): 6800-6807 (2004).
[26] Eslami Moghadam M., Mansouri-Torshizi H., Saidifar M., Investigation of the Interaction of Antitumor Palladium and Platinum Complexes of Ethyldithiocarbamate with Human Serum Albumin. Nashrieh Shimi va Mohandesi Shimi Iran, 37(4): 155-166 (2019).
[27] Chakraborti S., Chatterjee T., Joshi P., Poddar A., Bhattacharyya B., Singh S.P., Gupta V., Chakrabarti P., Structure and Activity of Lysozyme on Binding to ZnO Nanoparticles, Langmuir, 26(5): 3506-3513 (2009).
[28] Mahmoudi M., Shokrgozar M.A., Sardari S., Moghadam M.K., Vali H., Laurent S., Stroeve P., Irreversible Changes in Protein Conformation due to Interaction with Superparamagnetic Iron Oxide Nanoparticles, Nanoscale, 3(3): 1127-1138 (2011).
]29[ Perkampus H.H., "UV-VIS Spectroscopy and its Applications". Springer Science & Business Media (2013).
]30[ Worthington C.C., "Worthington Enzyme Manual: Enzymes and Related Biochemicals". Worthington Biochemical Corporation (1988).
[31] Stern O., Volmer M., Über Die Abklingzeit der Fluoreszenz, phys. Z, 20: 183-188 (1919).
[32] Lakowicz J.R., "Principles of Fluorescence Spectroscopy". Springer (2006).
[34] Karukstis K.K., Gruber S.M., Fruetel J.A., Boegeman S.C., Quenching of Chlorophyll Fluorescence by Substituted Anthraquinones, Biochimica et Biophysica Acta (BBA)-Bioenergetics, 932: 84-90 (1988).
[35] Karukstis K.K., Boegeman S.C., Fruetel J.A., Gruber S.M., Terris M.H., Multivariate Analysis of Photosystem II Fluorescence Quenching by Substituted Benzoquinones and Naphthoquinones, Biochimica et Biophysica Acta (BBA)-Bioenergetics, 891(3): 256-264 (1987).
[36] Rohatgi-Mukherjee K., "Fundamentals of Photochemistry". New Age International (1978).
[37] Le Chatelier H., Estimation of Firedamp by Flammability Limits, Annals of Mines, 19(8): 388-395 (1891).
[38] Ding F., Zhao G., Huang J., Sun Y., Zhang L., Fluorescence Spectroscopic Investigation of the Interaction between Chloramphenicol and Lysozyme, European journal of medicinal chemistry, 44(10): 4083-4089 (2009).
[40] Ji Z., Yuan H., Liu M., Hu J., 1H-NMR Study of the Effect of Acetonitrile on the Interaction of Ibuprofen with Human Serum Albumin. Journal of pharmaceutical and biomedical analysis, 30(1): 151-159 (2002).