مروری بر کاربرد نانوذره های مزومتخلخل سیلیکا به عنوان سامانه حمل دارو

نوع مقاله : مروری

نویسندگان

1 گروه پژوهشی مواد غذایی، پژوهشکده صنایع غذایی و کشاورزی، پژوهشگاه استاندارد، سازمان ملی استاندارد ایران، صندوق پستی 139 ـ 31745 کرج، ایران

2 گروه مهندسی پزشکی، دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

در سال ­های اخیر پژوهش بر روی مواد مزومتخلخل و روش­ های گوناگون آماده ­سازی و ساخت آن ها گسترش یافته است. این مواد رشد سریع و موفقیت آمیزی در کاربردهای گوناگون فرایندهای گوناگون داشته ‏اند. در میان مواد مزومتخلخل، مواد مزومتخلخل سیلیکای منظم توجه پژوهشگران زیست فناوریی را به خود جلب نموده است. در حقیقت این مواد پرکاربردترین مزومتخلخل ها در صنایع و فرایندهای گوناگون هستند. این مواد به عنوان جاذب برای جداسازی مولکول­ های فعال زیستی در موادغذایی، به عنوان نگه دارنده جامد برای تثبیت آنزیم، به ­عنوان حامل در سامانه دارویی و به عنوان کاتالیست در صنایع نفت و...، به کار می روند. سامانه ‏های رهایش کنترل شده بر پایه ـ نانوذره­ های مزومتخلخل سیلیکا، قادر به حمل انواع گوناگون مولکول ‏های میزبان هستند. به طور معمول، بارگذاری دارو در حدود 100 میلی گرم بر گرم از MSN است. از نانوذره ­های مزومتخلخل سیلیکایی برای حمل دارو در مکان خاص و رهایش کنترل شده داروها، ژن‏ ها و عامل ­های دیگر درمانی همانند آنتی اکسیدان ­ها می ‏توان استفاده کرد. در این مقاله مروری سعی بر آن است تا ساخت نانوذره­های مزومتخلخل سیلیکا، از مواد و روش ‏های کنترل ویژگی­ های ساختاری و عامل دارسازی شیمیایی آن ­ها برای کاربردهای زیست دارویی و زیست فناوری، و همچنین برتری ­های کاربرد نانوذره ­های مزومتخلخل سیلیکا، زیست سازگاری و ساز و کار دریافت آن­ ها توسط سلول میزبان در شرایط آزمایشگاهی شرح داده شود.

کلیدواژه‌ها

موضوعات


[1] Vallet-Regi M., Balas F., Arcos D., Mesoporous Materials for Drug Delivery, Angew. Chem. Int. 46: 7548-7558 (2007).
[2] Christe Sonia Mary M., Sasikumar S., Sodium Alginate/Starch Blends Loaded with Ciprofloxacin Hydrochloride as a Floating Drug Delivery System In Vitro Evaluation, Iran. J. Chem. Chem. Eng. (IJCCE), 34(2): 25-31 (2015).
[3] Gerion D., Herberg J., Bok R., Gjersing E., Ramon E., Maxwell R., Kurhanewicz J., Budinger T.F., Gray J.W., Shuman M.A., Chen F.F., Paramagnetic Silica-Coated Nanocrystals as an Advanced MRI Contrast Agent, J. Phys. Chem. C., 111: 12542–12551 (2007).
[5] Urbanski W., Marycz K., Krzak J., Pezowicz C., Dragan S.F., Cytokine Induction of Sol–Gel-Derived TiO2 and SiO2 Coatings on Metallic Substrates after Implantation to Rat Femur, Int. J. Nanomedicine., 12: 1639–1645 (2017).
[6] Ahmadi Nasab N., Hassani Kumleh H., Application of Spherical Mesoporous Silica MCM - 41 for Adsorption of Dibenzothiophene (A Sulfur Containing Compound) from Model Oil, Iran. J. Chem. Chem. Eng. (IJCCE), 33 (3): 38-42 (2014).
[7] Mosselhy D.A., Ge Y., Gasik M., Nordström K., Natri O., Hannula S-P., Silica-Gentamicin Nanohybrids: Synthesis and Antimicrobial Action, J. Materials., 9: 170–186 (2016).
[8] Sahoo B., Devi K.S.P., Dutta S., Maiti T.K., Pramanik P., Dhara D., Biocompatible Mesoporous Silica-Coated Superparamagnetic Manganese Ferrite Nanoparticles for Targeted Drug Delivery and MR Imaging Applications, J. Colloid Inter Sci., 26: 31–41 (2014).
[9] Allouche J., Chanéac C., Brayner R., Boissière M., Coradin T., Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulationversus in Situ Growth of Iron Oxide Colloids, J. Nanomaterials., 4: 612–627 (2014).
[10] Lu C., Yoganathan R.B., Kociolek M., Allen C., Hydrogel Containing Silica Shell Cross-Linked Micelles for Ocular Drug Delivery, J. Pharm. Scie., 102: 627-637 (2013).
[11] Vallet-Regí M., Mesoporous Silica Nanoparticles: Their Projection in Nanomedicin, Int. Scholar Res. Net., 2012: 1-12 (2012).
[12] Wang SH., Ordered Mesoporous Materials for Drug Delivery, Micropor. Mesopor. Mat., 117: 1-9 (2009).
[13] Dı´az A., Lo´pez T., Manjarrez J., Basaldella E., Martı´nez-Blanes J.M., Odriozola J.A. Growth of Hydroxyapatite in a Biocompatible Mesoporous Ordered Silica., Acta Biomaterialia, 2: 173-179 (2006).
[14] Karimi M., Mirshekari H., Aliakbari M., Sahandi-Zangabad P., Hamblin M.R., Smart Mesoporous Silica Nanoparticles for Controlled-Release Drug Delivery., Nanotech. Rev., 5: 195-221 (2016).
[15] Meynen V., Cool P., Cool Vansant P., Verified Syntheses of Mesoporous Materials, Micropor. Mesopor. Mat., 125: 170–223 (2009).
[16] Vazquez N.I., Gonzalez Z., Ferrari B., Castro Y., Synthesis of Mesoporous Silica Nanoparticles by Sol–Gel as Nanocontainer for Future Drug Delivery Applications, Boletín de la Sociedad Española de Cerámica y Vidrio. In press (2017).
[17] Brady R., Woonton B., Gee M.L., O'Connor A.J. Hierarchical Mesoporous Silica Materials for Separation of Functional Food Ingredients - AReview, Innov. Food. Sci. Emerg. Tech., 9: 243-248 (2008).
[18] Popat A., Hartono S.B., Stahr F., Liu J., Qiao S.Z., Lu GQM., Mesoporous Silica Nanoparticles for Bioadsorption, Enzyme Immobilisation, and Delivery Carriers, Nanoscale, 3: 2801-2818 (2011).
[19] Gonzalez G., Sagarzazu A., Zoltan T., Infuence of Microstructure in Drug Release Behavior of Silica Nanocapsules. J. Drug. Del., 2013: 1-8 (2013).
[20] Bouchoucha M., Côté M.F., C.-Gaudreault R., Fortin M.A., Kleitz F., Size-Controlled Functionalized Mesoporous Silica Nanoparticles for Tunable Drug Release and Enhanced Anti-Tumoral Activity. Chem. Mater., 28 (12): 4243–4258 (2016).
[21] Chen Z., Wu1 C., Yang Y., Shi J., Hu J., Yang Z., Chen Z.,Synthesis and Drug Delivery of Mesoporous Silica nanoparticles for Cancer Therapy, Euro. J. Biomed. Res., 1: 30-36 (2015).
[22] Karimzadeh M., Rashidi L., Ganji F., TahmasebiEnferadi, S, Application of Mesoporous Silica Nanoparticles as a Drug Delivery for Rivastigmine Hydrogen Tartarate, Iran. J. Biomed. Eng., 8: 386-399 (2015).
[23] Iraji S., Rashidi L., Ganji F., Functionalized Mesoporous Silica Nanoparticles as a Novel Antioxidant Delivery, System. Iran J Chem Eng., 12:93-100 (2015).
[24] Wang X., Zhang Y., Luo W., Elzatahry A.A., Cheng X., Alghamdi A., Abdullah A.M., Deng Y., Zhao D., Synthesis of Ordered Mesoporous Silica with Tunable Morphologies and Pore Sizes via a Nonpolar Solvent-Assisted Stöber Method, Chem. Mater., 28 (7): 2356–2362 (2016).
[25] Zhao D., Sun J., Li Q., Stucky G.D. Morphological Control of Highly Ordered Mesoporous Silica SBA-15, Chem. Mater., 12: 275-279 (2000).
[28] Cavallaro G., Pierro P., Palumbo F.S., Testa F., Pasqua L., Aiello R., Drug Delivery Devices Based on Mesoporous Silicate, Drug Deliv., 11: 41–46 (2004).
[29] Qu F.Y., Zhu G.S., Huang S.Y., Li S.G., Qiu S.L., Effective Controlled Release of Captopril by Silylation of Mesoporous MCM-41, Chemphys Chem., 7: 400–406 (2006).
[30] Munoz B., Ramila A., Perez-Pariente J., Diaz I., Vallet-Regi M. MCM-41 Organic Modification as Drug Delivery Rate Regulator, Chem. Mater., 15: 500–503 (2003).
[31] Zeng W., Qian X.F., Zhang Y.B., Yin J., Zhu Z.K. Organic Modified Mesoporous MCM-41 Through Solvothermal Process as Drug Delivery System, Mater. Res. Bull., 40: 766-772 (2005).
[32] Doadrio A.L., Sousa E.M.B., Doadrio J.C., Pariente J.P., Izquierdo-Barba I., Vallet-Regi M., Mesoporous SBA-15 HPLC Evaluation for Controlled, J. Control Release, 97: 125-132 (2004).
[33] Doadrio J.C., Sousa E.M.B., Izquierdo-Barba I., Doadrio A.L., Perez-Pariente J., Vallet-Regi M., Functionalization of Mesoporous Materials with Long Alkyl Chains as a Strategy for Controlling Drug Delivery Pattern, J. Mater. Chem., 16: 462–466 (2006).
[35] Vallet-Regi M., Doadrio J.C., Doadrio A.L., Izquierdo-Barba I., Perez-Pariente J., Hexagonal Ordered Mesoporous Material as a Matrix for the Controlled Release of Amoxicillin, Solid State Ionics, 172: 435–439 (2004).
[36] Zhu Y.F., Shi J.L., Chen H.R., Shen W.H., Dong X.P. A Facile Method to Synthesize Novel Hollow Mesoporous Silica Spheres and Advanced Storage Property, Turret Mat., 84: 218–222 (2004).
[37] Zhu Y.F., Shi J.L., Shen W.H., Chen H.R., Dong X.P., Ruan M.L., Preparation of Novel Hollow Mesoporous Silica Spheres and Their Sustained-Release Propery, Nanotechnol., 16: 2633–2638 (2005).
[38] Tourne-Peteilh C., Lerner D.A., Charnay C., Nicole L., Begu S., Devoisselle J.M. Preparation of Novel Hollow Mesoporous Silica Spheres and Their Sustained-Release Property, Chem phys Chem., 4: 281–286 (2003).
[39] Manzanoa M., Ainaa V., Areánb C.O., Balasa F., Cauda V., Studies on MCM-41 Mesoporous Silica for Drug Delivery: Effect of Particle Morphology and Amine Functionalization, Chem. Eng. J., 137: 30-37 (2008).
[40] Zelenak V., Hornebecq V., Llewellyn P., Zinc(II)-Benzoato Complexes Immobilised in Mesoporous Silica Host, Micropor. Mesopor. Mat., 83: 125–135 (2005).
[41] Izquierdo-Barba I., Martinez A., Doadrio A.L., Perez-Pariente J., Vallet-Regi M., Release Evaluation of Drugs from Ordered Three-Dimensional Silica Structures, J. Pharm. Sci., 26: 365–373 (2005).
[42] Huang X., Young N.P., Townley H.E.,Characterization and Comparison of Mesoporous Silica Particles for Optimized Drug Delivery,J.Nanomater. Nanotech., 4: 1–15 (2014).
[43] Zhai Q-Z., Wu Y-Y., Wang X-H., Synthesis, Characterization and Sustaining Controlled Release Effect of Mesoporous SBA-15/Ramipril Composite Drug, J. Incl. Phenom. Macrocycl. Chem., 77:113-120.
[44] Singh R.K., Kim T-H., Mahapatra C., Patel K-D., Kim H-W., Preparation of Self-Activated Fluorescence Mesoporous Silica Hollow Nanoellipsoids for Theranostics. Langmuir, 31 (41): 11344–11352 (2015).
[45] Bahrami Z., Badiei A., Surface F., Functionalization of SBA-15 Nanorods for Anticancer Drug Delivery, Chem. Eng. Res. Des., 92: 1296-1303 (2014).
[46] Tao J., Xu Y., Zhou G.Z., Wu C., Song H., Wang Ch.,Ordered Mesoporous SBA-15 for Controlled Release of Water-Insolube Drug., Adv. Mat. Res., 236-238: 1873-1876 (2011).
[47] Popovici R.F., Seftel E.M., Mihai G.D., Popovici E., Voicu V.A.,Controlled Drug Delivery System Based on Ordered Mesoporous Ordered Mesoporous Silica Matrices of Captopril as Angiotensin-Converting Enzyme Inhibitor Drug., J. Pharm. Sci, 100: 704-714 (2011).
[48] Lehto V.P., Vaha-Heikkila K., Paski J., Salonen J., Use of Thermoanalytical Methods in Quantification of Drug Load in Mesoporous Silicon Microparticles, J. Therm. Anal. Calori., 80: 393–397 (2005).
[50] Gomez-Vega J.M., Hozumi A., Sugimura H., Takai O.,Ordered Mesoporous Silica Coatings That Induce Apatite Formation In Vitro, Adv. Mater., 13:822–825 (2001).
[51] Gomez-Vega J.M., Hozumi A., Saiz E., Tomsia A.P., Sugimura H., Takai O., Bioactive Glass-Mesoporous Silica Coatings on Ti6Al4V Through Enameling and Triblock-Copolymer-Templated Sol-Gel Processing, J. Biomed. Mater. Res., 56: 382–389 (2001).
[52] Bharti C., Nagaich U., Kumar P.A., Gulati N., Mesoporous Silica Nanoparticles in Target Drug Delivery System: A Review, Int. J. Pharm. Investig., 5(3): 124–133 (2015).
[53] Wang Y., Zhao Q., Han N., Bai L., Li J., Liu J., Che E., Hu L., Zhang Q., Jiang T., Wang S., Mesoporous Silica Nanoparticles in Drug Delivery and Biomedical Applications, Nanomed. Nanotech. Biol. Med., 11:313-327 (2015).
[54] Kralj S., Rojnik M., Kos J., Makovec D., Targeting EGFR-Overexpressed A431 Cells with EGF-Labeled Silica-Coated Magnetic Nanoparticles, J. Nanopar. Res., 15:1-11 (2013).
[55] Huang X., Li L., Liu T., Hao N., Liu H., Chen D., The Shape Effect of Mesoporous Silica Nanoparticles on Biodistribution, Clearance, and Biocompatibility in Vivo, ACS Nano., 5:5390-5399 (2011).
[56] Tang L., Gabrielson N.P., Uckun F.M., Fan T.M., Cheng J., Size-Dependent Tumor Penetration and in Vivo Efficacy of Monodisperse Drug–Silica Nanoconjugates, Molecul. Pharm., 10: 883-92 (2013).
[57] Pan L., He Q., Liu J., Chen Y., Ma M., Zhang L., Shi J., Nuclear-Targeted Drug Delivery of TAT Peptide-Conjugated Monodisperse Mesoporous Silica Nanoparticles, J. Am. Chem. Soc., 134:5722-5725 (2012).
[58] He D., He X., Wang K., Cao J., Zhao Y., A Light-Responsive Reversible Molecule-Gated System Using Thymine-Modified Mesoporous Silica Nanoparticles, Langmuir, 28:4003-8 (2012).
[59] Vallet-Regí M., Nanostructured Mesoporous Silica Matrices in Nanomedicine, J. Int. Med., 267(1): 22–43 (2010).
[60] Xu J.H., Gao F.P., Li L.L., Ma H.L., Fan Y.S., Liu W., Guo S.S., Zhao X.Z., Wang H., Gelatin–Mesoporous Silica Nanoparticles as Matrix Metalloproteinases-Degradable Drug Delivery Systemsin Vivo, Micropor. Mesopor. Mat., 182: 165–172 (2013).
[61] Li X., Tang T., Zhou Y., Zhang Y., Sun Y., Applicability of Enzyme-Responsive Mesoporous Silica Supports Capped with Bridged Silsesquioxane for Colon-Specific Drug Delivery, Micropor. Mesopor. Mat., 184: 83-89 (2014).
[62] Wang X., Miao J., Xia Q., Yang K., Huang X., Zhao W., Shen J., A High-Sensitivity Immunosensor for Detection of Tumor Marker Based on Functionalized Mesoporous Silica Nanoparticles, Electrochimica Acta., 112: 473- 479 (2013).
[63] Kamarudin N.H.N., Jali A.A., Triwahyono S., Salleh N.F.M., Karim A.H., Mukti R.R., Hameed B.H., Ahmad A., Role of 3-Aminopropyltriethoxysilane in the Preparation of Mesoporous Ssilica Nanoparticles for Ibuprofen Delivery: Effect on Physicochemical Properties, Micropor. Mesopor. Mat., 180: 235–241 (2013).
[64] He Q., Shi J., Chen F., Zhu M., Zhang L., An Anticancer Drug Delivery System Based on Surfactant-Templated Mesoporous Silica Nanoparticles, Biomaterials., 31: 3335–3346 (2010).
[65] He Q., Gao Y., Zhang L., Zhang Z., Gao F., Ji X., Li Y., Shi J., A pH-Responsive Mesoporous Silica Nanoparticles-Based Multi-Drug Delivery System for Overcoming Multi-Drug Resistance, Biomaterials., 32: 7711-7720 (2011).
[67] Jia L., Shen J., Li Z., Zhang D., Zhang Q., Duan C., Liu G., Zheng D., Liu Y.,  Tian X., Successfully Tailoring the Pore Size of Mesoporous Silica Nanoparticles: Exploitation of Delivery Systems for Poorly Water-Soluble Drugs, Int. J. Pharm., 439: 81–91 (2012).
[68] Peng H., Dong R., Wang S., Zhang Z., Luo M., Bai C., Zhao Q., Li J., Chen L., Xiong H., A pH-Responsive Nano-Carrier with Mesoporous Silica Nanoparticles Cores and Poly(acrylic acid) Shell-Layers: Fabrication, Characterization and Properties for Controlled Release of Salidroside, Int. J. Pharm.446: 153–159 (2013).
[69] Qu Y., Feng L., Liu B., Tong C., Changli L., A Facile strategy for Synthesis of Nearly White Light Emitting Mesoporous Silica Nanoparticles, Colloid. Surface A., 441: 565-571 (2014).
[70] Gu J., Su S., Zhu M., Li Y., Zhao W., Duan Y., Shi J., Targeted Doxorubicin Delivery to Liver Cancer Cells by PEGylated Mesoporous silica Nanoparticles with a pH-Dependent Release Profile, Micropor. Mesopor. Mat., 161: 160–167 (2012).
[71] Tzankov B., Yoncheva K., Popova M., Szegedi A., Momekov G., Mihály J., Lambov N., Indometacin Loading and in Vitro Release Properties from Novel Carbopol Coated Spherical Mesoporous Silica Nanoparticles, Micropor. Mesopor. Mat., 171: 131–138 (2013).
[72] Minati L., Antonini V., Dalla Serra M., Speranza G., Enrichi F., Riello P., pH-Activated Doxorubicin Release from Polyelectrolyte Complex Layer Coated Mesoporous Silica Nanoparticles, Micropor. Mesopor. Mat., 180: 86–91 (2013).
[73] Chung T.H., Wu S.H., Yao M., Lu C.W., Lin Y.S., Hung Y., Mou C.Y. Chen Y.C., Dong-Ming Huang, The Effect of Surface Charge on the Uptake and Biological Function of Mesoporous Silica Nanoparticles in 3T3-L1 Cells and Human Mesenchymal Stem Cells, Biomaterial., 28: 2959–2966 (2007).
[74] Sun W., Fang N., Trewyn B.G., Tsunoda M., Slowing I.I., Lin V.S.Y., Yeung E.S., Endocytosis of a Single Mesoporous Silica Nanoparticle into a Human Lung Cancer Cell Observed by Differential Interference Contrast Microscopy, Anal. Bioanal. Chem., 391: 2119–2125 (2008).
[75] Singh N., Karambelkar A., Gu L., Lin K., Miller J.S., Chen C.S., Sailor M.J., Bhatia S.N., Bioresponsive Mesoporous Silica Nanoparticles for Triggered Drug Release, J. Am. Chem. Soc., 133(49): 19582–19585 (2011).
[78] Bhattarai S.R., Muthuswamy E., Wani A., Brichacek M., Castañeda A.L., Brock S.L., Oupicky D., Enhanced Gene and siRNA Delivery by Polycation-Modified Mesoporous Silica Nanoparticles Loaded with Chloroquine, Pharm Res., 27:2556–2568 (2010).
[79] Suwalski A., Dabboue H., Delalande A., Bensamoun S.F., Canon F., Midoux P., Saillant G., Klatzmann D., Salvetat J.P., Pichon C., Accelerated Achilles Tendon Healing by PDGF Gene Delivery with Mesoporous Silica Nanoparticles, Biomaterials., 31: 5237-5245 (2010).
[80] Taylor K.M.L., Kim J.S., Rieter W.J., An H., Lin W., Lin W., Mesoporous Silica Nanospheres as Highly Efficient MRI Contrast Agents, J. Am. Chem. Soc., 130: 2154-2155 (2008).
[82] Zhang Y., Zhi Z., Jiang T., Zhang J., Wang Z., Wang S., Spherical Mesoporous Silica Nanoparticles for Loading and Release of the Poorly Water-Soluble Drug Telmisartan, J. Controll. Release., 145: 257–263 (2010).
[83] Lin Y.S., Tsai C.P., Huang H.Y., Kuo C.T., Hung Y., Huang D.M., Chen Y.C., Mou C.Y., Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers. Chem. Mater., 17: 4570-457 (2005).
[84] Chen C., Pu F., Huang Z., Liu Z., Ren J., Qu X., Stimuli-Responsive Controlled-Release System Using Quadruplex DNA-Capped Silica Nanocontainers, Nucleic Acids Res., 39:1638-1644 (2011).
[85] Zhang J., Postovit L.M., Wang D., Gardiner R.B., Harris R., Abdul M.M., Thomas A.A., In Situ Loading of Basic Fibroblast Growth Factor Within Porous Silica Nanoparticles for a Prolonged Release, Nanoscale Res Lett., 4: 1297–1302 (2009).
[86] Lu J., Liong M., Sherman S., Xia T., Kovochich M., Nel A.E., Zink J.I., Tamanoi F., Mesoporous Silica Nanoparticles for Cancer Therapy: Energy-Dependent Cellular Uptake and Delivery of Paclitaxel to Cancer Cells, Nanobiotechnol., 3:89–95 (2007).
[87] Lai C.Y., TrewynB.G., Jeftinija D.M., Jeftinija K., Xu S., Jeftinija S., Lin V.S.Y., A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules, J. Am. Chem. Soc., 125: 4451-4459 (2003).
[88] Kim M.H., Na H.K., Kim Y.K., Ryoo S.R., Cho H.S., Lee K.E., Jeon H., Ryoo R., Min D.H., Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery, ACS Nano., 5: 3568–3576 (2011).
[89] Sun J.T., Hong C.Y., Pan C.Y., Fabrication of PDEAEMA-Coated Mesoporous Silica Nanoparticles and pH-Responsive Controlled Release, J. Phys. Chem. C., 114: 12481-12486 (2010).
[90] Slowing I.I., Trewyn B.G., Lin V.S.Y., Mesoporous Silica Nanoparticles for Intracellular Delivery of Membrane-Impermeable Proteins, J. Am. Chem. Soc., 129: 8845-8849 (2007).
[91] Hom C., Lu J., Liong M., Luo H., Li Z., Zink J.I., Tamanoi F., Mesoporous Silica Nanoparticles Facilitate Delivery of siRNA to Shutdown Signaling Pathways in Mammalian Cells, Small., 11: 1185–1190 (2010).
[93] He Q., Zhang J., Shi J., Zhu Z., Zhang L., Bu W., Guo L., Chen Y., The Effect of PEGylation of Mesoporous Silica Nanoparticles on Nonspecific Binding of Serum Proteins and Cellular Responses, Biomaterials., 31: 1085–1092 (2010).
[94] Fisichella M., Dabboue H., Bhattacharyya S., Saboungi M.L., Salvetat J.P., Hevor T., Guerin M., Mesoporous Silica Nanoparticles Enhance MTT Formazan Exocytosis in HeLa Cells and Astrocytes, Toxicol. In Vitro., 23: 697–703 (2009).
[95] Park H.S., Kim C.W., Lee H.J., Choi J.H., Lee S.G., Yun Y.P., Kwon I.C., Lee S.J., Jeong S.Y., Lee S.C., A Mesoporous Silica Nanoparticle with Charge-Convertible Pore Walls for Efficient Intracellular Protein Delivery, Nanotechnol., 21: 225101-9 (2010).
[96] Cheng S.H., Liao W.N., Chen L.M., Lee C.H., pH-Controllable Release Using Functionalized Mesoporous Silica Nanoparticles as an Oral Drug Delivery System, J. Mater. Chem., 21: 7130–7137 (2011).
[97] Rashidi L., Vasheghani-Farahani E., Rostami K., Gangi F., Fallahpour M., Mesoporous Silica Nanoparticles as a Nanocarrier for Delivery of Vitamin C, Iran. J. Biotech., 11(4): 209-13 (2013).
[98] Rashidi L., Vasheghani-Farahani E., Soleimani M., Atashi A., Rostami K., Gangi F., Fallahpour M., Tahouri M.T. A Cellular Uptake and Cytotoxicity Properties Study of gallic Acid-Loaded Mesoporous Silica Nanoparticles on Caco-2 Cells, J Nanopart Res., 16:2285 (2014).
[99] Bolouki A., Rashidi L., Vasheghani-Farahani E., Piravi-Vanak Z., Study of Mesoporous Silica Nanoparticles as Nanocarriers for Sustained Release of Curcumin, Int. J. Nanosci. Nanotechnol., 11:.139-146 (2015).
[100] Ma'mani L., Nikzad S., Kheiri-manjili H., al-Musawi S., Saeedi M., Askarlou S., Foroumadi A., Sha A., Curcumin-Loaded Guanidine Functionalized PEGylated I3ad Mesoporous Silica Nanoparticles KIT-6: Practical Strategy for the Breast Cancer Therapy, Europe. J. Med. Chem., 83 : 646-654 (2014).
[101] Taebnia N., Morshedi D.,Yaghmaei S., Aliakbari F., Rahimi F., Arpanaei A., Curcumin-Loaded Amine-Functionalized Mesoporous Silica Nanoparticles Inhibit α-Synuclein Fibrillation and Reduce Its Cytotoxicity-Associated Effects., Langmuir, 32: 13394–13402 (2016).
[103] Popat A, Liu J, Lu GQ, Qiao SZ. A pH-Responsive Drug Delivery System Based on Chitosan Coated Mesoporous Silica Nanoparticles, J Mater Chem., 22:11173–11178 (2012).
[104] Gan Q., Zhu J., Yuan Y., Liu H., Qian J., Li Y., Liu C., A Dual-Delivery System of pH-Responsive Chitosan-Functionalized Mesoporous Silica Nanoparticles Bearing BMP-2 and Dexamethasone for Enhanced Bone Regeneration, J. Mat. Chem. B., DOI: 10.1039/C4TB01897D, Online published, 1-11 (2014).
[106] Slowing I.I., Vivero-Escoto J.L., Wu C.W., Lin V.S.Y., Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers, Adv. Drug Del. Rev., 60: 1278–1288 (2008).
[107] Colilla M., Vallet-Regı M., Novel Insights into Ordered Mesoporous Materials for Biomedical Applications. In: Kosser W, Fuchs J, (Eds.) Bioceramics, “Properties, Preparation and Plications”, New York: Nova Science Publishers, Inc., (2009).
[108] Slowing I.I., Trewyn B.G., Lin V.S.Y., Effect of Surface Functionalization of MCM-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human Cancer Cells, J. Am. Chem. Soc.,128: 14792–14793 (2006).
[109] Lu J., Liong M., Zink J.I., Tammanoi F., Mesoporous Silica Nanoparticles as a Delivery System for Hydrophobic Anticancer Drugs, Small., 3: 1341–1346 (2007).
[110] Giri S., Trewyn B.G., Stellmaker M.P., Lin V.S.Y.,Stimuli-Responsive Controlled Release Delivery System Based on Mesoporous Silica Nanorods Capped with Magnetic Nanoparticles, Angew. Chem., Int. Ed., 44: 5038–5044 (2005).
[111] Hudson S.P., Padera R.F., Langer R., Kohane D.S., The Biocompatibility of Mesoporous Silicates, Biomaterials, 29: 4045–55 (2008).