تأثیر نانو ذره‌های آلومینای اصلاح شده برعملکرد غشای پلیمری در کاهش سختی آب

نوع مقاله : علمی-پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده انرژی، دانشگاه صنعتی کرمانشاه، کرمانشاه، ایران

چکیده

نانوپرکننده­ های اصلاح ­شده با قراردادن پلی­ اکریلیک­ اسید بر روی نانوذره­ های آلومینا، به عنوان نانو مواد آلی، در غشای پلی ­سولفون گنجانده شدند. بازده غشاهای بهبودیافته با نانومواد در کاهش سختی آب با استفاده از یون های منیزیم موجود در محلول به­ عنوان خوراک بررسی شد. غلظت خوراک، pH و همچنین مقدار نانوذره ­ها در ماتریس غشا، به عنوان متغیرهای عملیاتی در راستای بهینه سازی فرایند با استفاده از روش پاسخ سطحی درنظرگرفته شدند. گروه­ های عاملی کربوکسیل قرارگرفته برروی نانوذره ­های آلومینا، موجب افزایش میزان بار منفی روی سطح غشا و درنتیجه حذف کاتیون ­ها از آب شدند. آنالیز آماری نشان می­ دهد که وجود 5/0 % وزنی نانوذره ­ها در ماتریس غشای پلیمری در غلظت بالای یون­ های منیزیم موجود در محلول خوراک با 84/6 =pH  شرایط بهینه در دستیابی به بالاترین بازدهی در کاهش سختی آب (81%) را دارا می­ باشند. مدل پیش ­بینی ­شده با نتیجه ­های آزمایشگاهی به­ دست آمده از غشای ساخته­ شده به­ خوبی متناسب بوده و شرایط فرایند برای دستیابی به غشای سختی زدای آب مناسب است. بنابراین، میزان شار آب برای غشاهای نانوکامپوزیت ساخته­ شده باتوجه به تغییرها در ساختار غشا و آب­دوستی سطح آن افزایش یافته است.

کلیدواژه‌ها

موضوعات


[1] Ghizellaoui S., Taha S., Dorange G., Softening of Hamma Drinking Water by Nanofiltration and by Lime in the Presence of Heavy Metals, Desalination, 171(2): 133-138 (2005) .
[2] Ouyang L., R. Malaisamy M.L., Bruening, Multilayer Polyelectrolyte Films as Nanofiltration Membranes for Separating Monovalent and Divalent Cations, Journal of Membrane Science, 310(1–2): 76-84 (2008).
[3] Feng-Yang Z.h., Quan-F A., Yan-L J., Cong-J G., A Novel Type of Polyelectrolyte Complex/MWCNT Hybrid Nanofiltration Membranes for Water Softening, Journal ofMembrane Science, 492: 412-421(2015).
[4] Duran F.E., Dunkelberger G.W., A Comparison of Membrane Softening on Three South Florida Groundwaters, Desalination, 102(1-3): 27-34 (1995).
[5] Yin J., Deng B., Polymer-Matrix Nanocomposite Membranes for Water Treatment, Journal of Membrane Science, 479: 256-275(2015).
[7] Montgomery M.A., Elimelech M., Water and Sanitation in Developing Countries: Including Health in the Equation., ACS Publications(2007).
[8] Schaep J., Van der Bruggen B., Uytterhoeven S., Croux R., Removal of Hardness from Groundwater by Nanofiltration, Desalination, 119(1-3): 295-301(1998)
[10] Mousavi M., Avami A., Modeling and Simulation of Water Softening by Nanofiltration Using Artificial Neural Network. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 25(4):37-45(2006).
[11] Chakraborty, S., Purkait. M.K., DasGupta. S., Nanofiltration of Textile Plant Effluent for Color Removal and Reduction in COD, Separation and Purification Technology, 31(2): 141-151(2003).
[12] Ghaemi, N., Madaeni. S. S., Daraei.P., Rajabi. H., PES Mixed Matrix Nanofiltration Membrane Embedded with Polymer Wrapped MWCNT: Fabrication and Performance Optimization in Dye Removal by RSM, J Journal of Hazardous Materials, 298: 111-121 (2015).
[13] Abid M.F., Zablouk M.A. , Abid-Alameer A.M., Experimental Study of Dye Removal from Industrial Wastewater by Membrane Technologies of Reverse Osmosis and Nanofiltration, Iranian Journal of Environmental Health Science & Engineering, 9(1): 9-17 (2012).
[16] Ng L.Y., Mohammad A. M., PengLeo Ch., Hilal N., Polymeric Membranes Incorporated with Metal/Metal oxide Nanoparticles: A Comprehensive Review,Desalination, 308: 15-33 (2013).
[17] Rajabi H., Ghaemi N., Madaeni S.S., Daraei P., Falsafi M., Nanoclay Embedded Mixed Matrix PVDF Nanocomposite Membrane: Preparation, Characterization and Biofouling Resistance, Applied Surface Science, 313: 207-214 (2014).
[18] Zhang X., Wang Y., Liu Y., Xu X., Preparation, Performances of PVDF/ZnO Hybrid Membranes and Their Applications in the Removal of Copper Ions, Applied Surface Science, 316: 333-340 (2014).
316: 333-340 (2014).
[19] Bet-Moushoul E., Mansourpanah Y., Farhadi Kh., Tabatabaei M., TiO2 Nanocomposite Based Polymeric Membranes: a Review on Performance Improvement for Various Applications in Chemical Engineering Processes, Chemical Engineering Journal, 283: 29-46 (2016) .
[20] Jyothi M., Nayak V., Padaki M., Aminated Polysulfone/TiO2 Composite Membranes for an Effective Removal of Cr (VI). Chemical Engineering Journal, 283:1494-1505 (2016).
[21] Peyravi M., Jahanshahi M., Rahimpour A., Javadi J., Hajavi S., Novel Thin Film Nanocomposite Membranes Incorporated with Functionalized TiO2 Nanoparticles for Organic Solvent Nanofiltration,  Chemical Engineering Journal, 241:155-166 (2014).
[22] Tang J., Zhu H., Wang A., Yuan Y., Fabrication and Characterization of Novel Composite Membranes Composed of Photonic Crystals and TiO2 Nanotube Array Films, Optical Materials, 55: 130-135 (2016).
[23] Guo H., Zhao Sh., Wu X., Qi H., Fabrication and Characterization of TiO2/ZrO2 Ceramic Membranes for Nanofiltration, Microporous and Mesoporous Materials, (2016).
[24] Nasef M.M., Fujigaya T., Abouzari-Lotf E., Yang Z., Enhancement of Performance of Pyridine Modified Polybenzimidazole Fuel Cell Membranes Using Zirconium Oxide Nanoclusters and Optimized Phosphoric Acid Doping Level, International Journal of Hydrogen Energy, 41(16): 6842-6854 (2016).
[26] Cai N., Li. Ch., Han. Ch., Luo. X., Shen. L., Xue. Y., Tailoring Mechanical and Antibacterial Properties of Chitosan/Gelatin Nanofiber Membranes with Fe3O4 Nanoparticles for Potential Wound Dressing Application, Applied Surface Science, 369: 492-500 (2016).
[27] Dudek G., Gnus M., Turkzyn R. Pervaporation with Chitosan Membranes Containing Iron Oxide Nanoparticles, Separation and Purification Technology, 133: 8-15 (2014).
[28] Ghaemi N., Madaeni S.S., Daraei P., Rajabi H., Polyethersulfone Membrane Enhanced with Iron Oxide Nanoparticles for Copper Removal from Water: Application of New Functionalized Fe3O4 Nanoparticles. Chemical Engineering Journal, 263:101-112 (2015).
[29] Ng Q., Lim J. K., Ahmad A.L., Ooi B.S., Magnetic Nanoparticles Augmented Composite Membranes in Removal of Organic Foulant Through Magnetic Actuation, Journal of Membrane Science, 493: 134-146 (2015).
[30] Wu H., Tang B., Wu P., Development of Novel SiO2–GO Nanohybrid/Polysulfone Membrane with Enhanced Performance, Journal of Membrane Science, 451: 94-102 (2014).
[32] Daraei P., Madaeni S.S., Ghaemi N., Khadivi M.A., Rajabi L., PAA Grafting onto New Acrylate-Alumoxane/PES Mixed Matrix Nano-enhanced Membrane: Preparation, Characterization and Performance in Dye Removal, Chemical Engineering Journal, 221: 111-123 (2013).
[34] Maximous N., Nakhla G., Wong K., Wan W., Optimization of Al2O3/PES Membranes for Wstewater Filtration, Separation and Purification Technology, 73(2): 294-301 (2010).
[35] Maximous N., Nakhla G., Wong K., Wan W., Preparation, Characterization and Performance of Al2O3/PES Membrane for Wastewater Filtration, Journal of Membrane Science, 341(1): 67-75 (2009).
[37] Fouladgar M., Behesht M., Sabzyan H., Single and Binary Adsorption of Nickel and Copper from Aqueous Solutions by γ-Alumina Nanoparticles: Equilibrium and Kinetic Modeling, Journal of Molecular Liquids, 211: 1060-1073 (2015).
[38] Rahmani A., Mousavi H.Z., Fazli M., Effect of Nanostructure Alumina on Adsorption of Heavy Metals. Desalination, 253(1): 94-100 (2010).
[39] Liu P., Modifications of Carbon Nanotubes with Polymers, European Polymer Journal, 41(11): 2693-2703 (2005).