ساخت ابرخازن با استفاده از نانو کامپوزیت‌های نیکل ـ کبالت/پلی پیرول

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده شیمی، دانشگاه تحصیلات تکمیلی در علوم پایه زنجان، زنجان ، ایران

2 گروه تجزیه های دستگاهی، پژوهشگاه صنعت نفت، تهران ، ایران

3 پژوهشگاه شیمی و مهندسی شیمی ایران، تهران، ایران

چکیده

در این پژوهش نانوکامپوزیت های­ میکرو کروی پلی­ پیرول و نیکل کبالت اکسید قاصدک شکل به روش هیدروترمال بر روی بستر فوم نیکل سنتز شد و به عنوان ماده الکترودی در ابرخازن­ ها مورد استفاده قرارگرفت. ریخت شناسی، ساختار و ترکیب نانوکامپوزیت تهیه شده با استفاده از میکروسکوپ الکترونی روبشی (SEM)، پراش پرتو ایکس (XRD)، پراش انرژی پرتو ایکس (EDX)، و FT-IR مورد بررسی قرار گرفت. همچنین کارایی الکتروشیمیایی الکترود نیکل کبالت اکسید/پلی­ پیرول/ فوم نیکل، با روش­ های ولتامتری چرخه­ ای، شارژ- دشارژ گالوانواستاتیک و طیف سنجی امپدانس الکتروشیمیایی مطالعه شد. الکترود تهیه شده ظرفیت بالای  F/g2342 در دانسیته جریان  Ag33/2 و پایداری چرخه ­ای خوب 79 درصد بعد از 2500 چرخه را در سامانه­ ی سه الکترودی  از خود نشان داد. همچنین برای بررسی رفتار واقعی الکترود تهیه شده، یک سامانه دو الکترودی متشکل از الکترود مثبت (نیکل کبالت اکسید/پلی ­پیرول/ نیکل فوم) و الکترود منفی (گرافن کاهش یافته/ نیکل فوم) و یک جدا کننده­ ی سلولوزی ساخته شد. سامانه­ ی ساخته شده ظرفیت بالای  F/g 186 در دانسیته جریان F/g 8/1به همراه پایداری چرخه ای 80 درصد پس از 1500 چرخه را از خود نشان داد. نتیجه­ های به­ دست آمده الکترود تهیه شده را کاندید مناسبی برای ساخت ابرخازن با کارایی بالا معرفی می کند.

کلیدواژه‌ها

موضوعات


]1[ Miller J., Burke A., Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications, Electrochem. Soc. Interface., 17: 53-57 (2008).
[2] Aricò A.S., Bruce P., Scrosati B., Tarascon J.-M., van Schalkwijk W., Nanostructured Materials for Advanced Energy Conversion and Storage Devices, Nat. Mater., 4: 366–377 (2005).
[3] Yang Z., Zhang J., Kintner-Meyer M.C.W., Lu X., Choi D., Lemmon J.P., Liu J., Electrochemical Energy Storage for Green Grid, Chem. Rev., 111: 3577–3613 (2011).
[4] Conway B.E., Electrochemical Supercapacitors, Springer US, Boston, MA (1999)
[5] Platt M., Dryfe R.A.W., Roberts E.P.L.: Electrodeposition of Palladium Nanoparticles at the Liquid-Liquid Interface Using Porous Alumina Templates, Electrochim. Acta., 48: 3037–3046 (2003).
[6] Du C., Yeh J., Pan N., High Power Density Supercapacitors Using Locally Aligned Carbon Nanotube Electrodes, Nanotechnology, 16: 350–353 (2005).
[7] Kazemi S.H., Tabibpour M., Kiani M.A., Kazemi H., An Advanced Asymmetric Supercapacitor Based on a Binder-Free Electrode Fabricated from Ultrathin CoMoO4 Nano-Dandelions, RSC Adv., 6: 71156–71164 (2016).
[8] Xiong W., Hu X., Wu X., Zeng Y., Wang B., He, G., Zhu Z., A flexible Fiber-Shaped Supercapacitor Utilizing Hierarchical NiCo2O4 @polypyrrole Core-Shell Nanowires on Hemp-Derived Carbon, J. Mater. Chem. A., 3: 17209–17216 (2015).
[9] Liu X., Shi S., Xiong Q., Li L., Zhang Y., Tang H., Gu C., Wang X., Tu J., Hierarchical NiCo2O4 @NiCo2O4 Core/Shell Nanoflake Arrays as High-Performance Supercapacitor Materials, ACS Appl. Mater. Interfaces., 5: 8790–8795 (2013).
[10] Yoon S., Lee J., Hyeon T., Oh S.M., Electric Double-Layer Capacitor Performance of a New Mesoporous Carbon, J. Electrochem. Soc., 147: 2507 (2000).
[11] Kazemi S.H., Hosseinzadeh B., Kazemi H., Kiani M.A., Hajati S., Facile Synthesis of Mixed Metal-Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability, ACS Appl. Mater. Interfaces., 10: 23063–23073 (2018).
[12] Kong D., Ren W., Cheng C., Wang Y., Huang Z., Yang H.Y., Three-Dimensional NiCo2O4 @Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor, ACS Appl. Mater. Interfaces., 7: 21334–21346 (2015).
[13] Kazemi S.H., Kiani M.A., Mohamadi R., Eskandarian L.: Metal-Polyaniline Nanofibre Composite for Supercapacitor Applications, Bull. Mater. Sci., 37: 1001–1006 (2014).
[15] Jing Hu., Minchan Li., Fucong L., Mingyang Y., Pengpeng T., Yougen T., Hongtao L., Zhouguang L., Heterogeneous NiCo2O4@polypyrrole Core/Sheath Nanowire Arrays on Ni foam for High Performance Supercapacitors, J. Power Sources., 294: 120–127 (2015).
[16] Hoon K., Danyun L., Saravanakumar B., Min-Kang S., Yong-Sik Ch., Hak-Yong K., Byoung-Suhk K., Polypyrrole-Decorated Hierarchical NiCo2O4 Nanoneedles/Carbon Fiber Papers for Flexible High-Performance Supercapacitor Applications, Electrochim. Acta., 247: 524–534 (2017).
[17] Dezhi K., Weina R., Chuanwei Ch., Ye, W., Zhixiang H., Hui-Ying Y., Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor, ACS Appl. Mater. Interfaces., 7: 21334–21346 (2015).
[18] Kaibing X., Xiaojuan H., Qian L., Rujia Z., Wenyao L., Xijian L., Shijie L., Jianmao Y., Junqing H., Understanding the Effect of Polypyrrole and Poly(3,4-ethylenedioxythiophene) on Enhancing the Supercapacitor Performance of NiCo2O4 Electrode, J. Mater. Chem. A., 2: 16731-16739 (2014).
[19] Chen Ch., Ning Z., Xiaohe L., Yulu H., Hao W., Bo L., Renzhi M., Anqiang P., Vellaisamy A. L. R., Polypyrrole-Modified NH4NiPO4·H2O Nanoplate Arrays on Ni Foam for Efficient Electrode in Electrochemical Capacitors, ACS Sustainable Chem. Eng., 4: 105578-5584 (2016).
[20] Safavi A., Kazemi H., Kazemi S.H., In Situ Electrodeposition of Graphene/Nano-Palladium on Carbon Cloth for Electrooxidation of Methanol in Alkaline Media, J. Power Sources., 256: 354–360 (2014).
[21] Cheng J., Lu Y., Qiu K., Yan H., Xu J., Han L., Liu X., Luo J., Kim J.-K., Luo Y., Hierarchical Core/Shell NiCo2O4@NiCo2O4 Nanocactus Arrays with Dual-functionalities for High-Performance Supercapacitors and Li-Ion Batteries, Sci. Rep., 5: 12099 (2015).
[22] Huang L., Chen D., Ding Y., Wang Z.L., Zeng Z., Liu M., Hybrid composite Ni(OH)2@NiCo2O4 Grown on Carbon Fiber Paper for High-Performance Supercapacitors, ACS Appl. Mater. Interfaces, 5: 11159-11162 (2013).
[23] Changzhou Y., Jiaoyang L., Linrui H., Xiaogang Z., Laifa S., Xiong W. L., Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors, Adv. Funct. Mater., 22: 4592-4597 (2012).
[24] Salunkhe R.R., Jang K., Yu H., Yu S., Ganesh T., Han S.-H., Ahn H., Chemical Synthesis and Electrochemical Analysis of Nickel Cobaltite Nanostructures for Supercapacitor Applications, J. Alloys Compd., 509: 6677-6682 (2011).
[25] Jiang H., Ma J., Li C., Hierarchical Porous NiCo2O4 Nanowires for High Rate Supercapacitors, Chem. Commun., 48: 4465-4467 (2012).
[27] Gao Z., Song N., Zhang Y., Li X., Cotton Textile Enabled, Allsolid- State Flexible Supercapacitors, RSC Adv., 5: 15438−15447 (2015).
[28] Gao G., Wu X., Ding H.B., Liu S.J., Lou L.M., Hierarchical NiCo2O4 Nanosheets Grown on Ni Nanofoam as High-Performance Electrodes for Supercapacitors, Small, 11: 804−808 (2015).
[29] Hao C., Zhou S., Wang J., Wang X., Gao H., Ge C., Preparation of Hierarchical Spinel NiCo2O4 Nanowires for High-Performance Supercapacitors, Ind. Eng. Chem. Res., 57: 2517−2525 (2018).