سنتز و بهبود مشخصه های زئولیت 11-ZSM با فلزهای واسطه برای کاربرد کاتالیستی آن در گوگردزدایی اکسایشی

نوع مقاله : علمی-پژوهشی

نویسندگان

گروه شیمی، دانشکده فیزیک و شیمی، دانشگاه الزهرا (س)، تهران، ایران

چکیده

زئولیت 11- ZSM به‌طور موفقیت آمیز با استفاده از روش دانه و با قالب آلی پیشنهادی N،N- دی‌اتیل‌آنیلین سنتز شد. افزون بر این، تأثیر نسبت سیلیسیم به آلومینیوم بر روی دانه بررسی و نسبت بهینه 10به ­دست آمد. زئولیت‌های سنتز شده با استفاده از فناوری‌های FT-IR، EDX، SEM، BET و XRD شناسایی شدند. از زئولیت‌ سنتز شده به‌عنوان کاتالیست ناهمگن در فرایند گوگردزدایی  اکسایشی برای مدل نفتی شامل n-هپتان و دی‌بنزوتیوفن استفاده شد. برای به­ دست آوردن شرایط بهینه‌ی واکنش اثر دما و مقدار کاتالیست مورد بررسی قرار گرفت و دمای 100 و مقدار g 05/0 به‌عنوان دما و مقدار کاتالیست بهینه انتخاب شد و تأثیر زمان در شرایط بهینه برای کاتالیست­ های گوناگون بررسی شد. همچنین درصد تبدیل دی‌بنزوتیوفن زئولیت‌های تبادل یونی شده با فلزهای واسطه‌ی گوناگون از جمله مولیبدن، وانادیوم، لانتانیم، کبالت، مس و سریم توسط کروماتوگرافی گازی محاسبه و با یک­دیگر مقایسه شد. نتیجه­ ها نشان داد که کاتالیست 11-ZSM/Mo فعالیت اکسایش بالایی در مقایسه با سایر کاتالیست­ ها در واکنش گوگردزدایی اکسایشی دارد.

کلیدواژه‌ها

موضوعات


[1] Dehghan R., Anbia M., Zeolites for Adsorptive Desulfurization from Fuels: A Review, Fuel Process. Technol, 167: 99-116 (2017).
[2] Maricq M.M., Chemical Characterization of Particulate Emissions from Diesel Engines: A Review, J. Aerosol Sci, 38(11): 1079-1118 (2007).
[3] Song C., An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel, Catal. Today, 86(1-4): 211-263 (2003).
[6] Andevary H.H., Akbari A., Omidkhah M., High Efficient and Selective Oxidative Desulfurization of Diesel Fuel Using Dual-Function [Omim] FeCl4 as Catalyst/Extractant, Fuel Process. Technol, 185: 8-17 (2019).
[7] Craven M., Xiao D., Kunstmann-Olsen C., Kozhevnikova E.F., Blanc F., Steiner A., Kozhevnikov I.V., Oxidative Desulfurization of Diesel Fuel Catalyzed by Polyoxometalate Immobilized on Phosphazene-Functionalized Silica, Appl. Catal., B, 231: 82-91 (2018).
[8] Méndez F.J., Franco-López O.E., Bokhimi X., Solís-Casados D.A., Escobar-Alarcón L., Klimova T.E., Dibenzothiophene Hydrodesulfurization with NiMo and CoMo Catalysts Supported on Niobium-Modified MCM-41, Appl. Catal., B, 219: 479-491 (2017).
[9] Zhang D., Liu W.-Q., Liu Y.-A., Etim U., Liu X.-M., Yan Z.-F., Pore Confinement Effect of MoO3/Al2O3 Catalyst for Deep Hydrodesulfurization, Chem. Eng. J, 330: 706-717 (2017).
[10] López-Benítez A., Berhault G., Guevara-Lara A., NiMo Catalysts Supported on Mn-Al2O3 for Dibenzothiophene Hydrodesulfurization Application, Appl. Catal., B, 213: 28-41 (2017).
[11] Sun M., Chen W.-C., Zhao L., Wang X.-L., Su Z.-M., A PTA@ MIL-101 (Cr)-Diatomite Composite as Catalyst for Efficient Oxidative Desulfurization, Inorg. Chem. Commun, 87: 30-35 (2018).
[12] Sikarwar P., Kumar U.A., Gosu V., Subbaramaiah V., Catalytic Oxidative Desulfurization of DBT Using Green Catalyst (Mo/MCM-41) Derived from Coal Fly Ash, J. of Environ. Chem. Eng, 6(2): 1736-1744 (2018).
[13] Zeng X., Xiao X., Li Y., Chen J., Wang H., Deep Desulfurization of Liquid Fuels with Molecular Oxygen Through Graphene Photocatalytic Oxidation, Appl. Catal., B, 209: 98-109 (2017).
[14] Bhutto A.W., Abro R., Gao S., Abbas T., Chen X., Yu G., Oxidative Desulfurization of Fuel Oils Using Ionic Liquids: A Review, J Taiwan Inst Chem Eng, 62: 84-97 (2016).
[15] Faghihian H., Naeemi S., Application of a Novel Nanocomposite for Desulfurization of a Typical Organo Sulfur Compound, Iran. J. Chem. Chem. Eng. (IJCCE), 32(3): 9-15 (2013).
[16] Ahmadi Nasab N., Hassani KumLeh H., Kazemzad M., Ghavipanjeh F., Application of Spherical Mesoporous Silica MCM-41 for Adsorption of Dibenzothiophene (A Sulfur Containing Compound) from Model Oil, Iran. J. Chem. Chem. Eng. (IJCCE), 33(3): 37-42 (2014).
[17] Bakhtiari G., Bazmi M., Abdouss M., Royaee S.J., Adsorption and Desorption of Sulfur Compounds by Improved Nano Adsorbent: Optimization Using Response Surface Methodology, Iran. J Chem. Chem. Eng. (IJCCE), 36(4): 69-79 (2017).
[18] Dyballa M., Becker P., Trefz D., Klemm E., Fischer A., Jakob H., Hunger M., Parameters Influencing the Selectivity to Propene in the MTO Conversion on 10-Ring Zeolites: Directly Synthesized Zeolites ZSM-5, ZSM-11, and ZSM-22, Appl. Catal., A, 510: 233-243 (2016).
[19] Chu P., Crystalline Zeolite ZSM-11, Google Patents, 1973.
[20] Kokotailo G., Chu P., Lawton S., Meier W., Synthesis and Structure of Synthetic Zeolite ZSM-11, Nature, 275 (5676): 119 (1978).
[21] Vinaches P., Alves J.A.B., Melo D.M., Pergher S.B., Raw Powder Glass as a Silica Source in the Synthesis of Colloidal MEL Zeolite, Mater. Lett, 178: 217-220 (2016).
[22] Sánchez M., Díaz R.D., Córdova T., González G., Ruette F., Study of Template Interactions in MFI and MEL Zeolites Using Quantum Methods, Micropor. Mesopor. Mat, 203: 91-99 (2015).
[23] Conte M., Xu B., Davies T.E., Bartley J.K., Carley A.F., Taylor S.H., Khalid K., Hutchings G.J., Enhanced Selectivity to Propene in the Methanol to Hydrocarbons Reaction by Use of ZSM-5/11 Intergrowth Zeolite, Micropor. Mesopor. Mat, 164: 207-213 (2012).
[24] Yu Q., Cui C., Zhang Q., Chen J., Li Y., Sun J., Li C., Cui Q., Yang C., Shan H., Hierarchical ZSM-11 with Intergrowth Structures: Synthesis, Characterization and Catalytic Properties, J. Energy. Chem, 22(5): 761-768 (2013).
[27] Abdullah W.N.W., Bakar W.A.W.A., Ali R., Mokhtar W.N.A.W., Omar M.F., Catalytic Oxidative Desulfurization Technology of Supported Ceria Based Catalyst: Physicochemical and Mechanistic Studies, J. Clean Prod., 162: 1455-1464 (2017).
[28] Wang X., Chen H., Meng F., Gao F., Sun C., Sun L., Wang S., Wang L., Wang Y., CTAB Resulted Direct Synthesis and Properties of Hierarchical ZSM-11/5 Composite Zeolite
in the Absence of Template
, Micropor. Mesopor. Mat, 243: 271-280 (2017).
[29] Lai R., Gavalas G.R., ZSM-5 Membrane Synthesis with Organic-Free Mixtures, Micropor. Mesopor. Mat, 38(2-3): 239-245 (2000).
[30] Majano G., Darwiche A., Mintova S., Valtchev V., Seed-Induced Crystallization of Nanosized Na-ZSM-5 Crystals, Ind. Eng. Chem. Res, 48(15): 7084-7091 (2009).
[31] Kim S.D., Noh S.H., Seong K.H., Kim W.J., Compositional and Kinetic Study on the Rapid Crystallization of ZSM-5 in the Absence of Organic Template Under Stirring, Micropor. Mesopor. Mat, 72(1-3): 185-192 (2004).
[32] Dey K.P., Ghosh S., Naskar M.K., A Facile Synthesis of ZSM-11 Zeolite Particles Using Rice Husk Ash as Silica Source, Mater. Lett, 87: 87-89 (2012).
[35] Jin C., Li G., Wang X., Wang Y., Zhao L., Sun D., A Titanium Containing Micro/Mesoporous Composite and Its Catalytic Performance in Oxidative Desulfurization, Micropor. Mesopor. Mat, 111(1-3): 236-242 (2008).
[36] Yu Q., Chen J., Zhang Q., Li C., Cui Q., Micron ZSM-11 Microspheres Seed-Assisted Synthesis of Hierarchical Submicron ZSM-11 with Intergrowth Morphology, Mater. Lett, 120: 97-100 (2014).
[38] Li X., Mao Y., Leng K., Ye G., Sun Y., Xu W., Enhancement of Oxidative Desulfurization Performance Over Amorphous Titania by Doping MIL-101 (Cr), Micropor. Mesopor. Mat, 254: 114-120 (2017).
[41] Groen J.C., Jansen J.C., Moulijn J.A., Pérez-Ramírez J., Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication, J. Phys. Chem. B, 108(35): 13062-13065 (2004).
[42] Groen J.C., Peffer L.A., Moulijn J.A., Pérez‐Ramírez J., Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore‐Directing Agent, Chem. Eur. J, 11(17): 4983-4994 (2005).
[43] Gonzalez G., Gomes M.E., Vitale G., Castro G.R., Effect of Al Content on Phase Transitions of Zeolite MEL, Micropor. Mesopor. Mat, 121(1-3): 26-33 (2009).
[44] Shirazi L., Jamshidi E., Ghasemi M ,. The Effect of Si/Al Ratio of ZSM‐5 Zeolite on Its Morphology, Acidity and Crystal Size, Cryst. Res. Technol, 43(12): 1300-1306 (2008).
[46] Chai L., Li H., Zheng X., Wang J., Yang J., Lu J., Yin D., Zhang Y., Pervaporation Separation of Ethanol–Water Mixtures Through B-ZSM-11 Zeolite Membranes on Macroporous Supports, J. Membr. Sci, 491: 168-175 (2015).
[47] Hernández-Maldonado A.J., Yang R.T., Desulfurization of Liquid Fuels by Adsorption via π Complexation with Cu (I)− Y and Ag− Y Zeolites, Ind. Eng. Chem. Res, 42(1): 123-129 (2003).
[49] Shen V., Watanabe K., Bell A., Theoretical Analysis of the Thermodynamics of ZSM-11 Zeolite Synthesis, J. Phys. Chem. B, 101(12): 2207-2212 (1997).
[50] Borry R.W., Kim Y.H., Huffsmith A., Reimer J.A., Iglesia E., Structure and Density of Mo and Acid Sites in Mo-Exchanged H-ZSM5 Catalysts for Nonoxidative Methane Conversion, J. Phys. Chem. B, 103(28): 5787-5796 (1999).
[51] Mannei E., Ayari F., Petitto C., Asedegbega–Nieto E., Guerrero–Ruiz A.R., Delahay G., Mhamdi M., Ghorbel A., Light Hydrocarbons Ammoxidation Into Acetonitrile over Mo–ZSM-5 Catalysts: Effect of Molybdenum Precursor, Micropor. Mesopor. Mat, 241: 246-257 (2017).
[52] Zhu W., Zhu G., Li H., Chao Y., Zhang M., Du D., Wang Q., Zhao Z,. Catalytic Kinetics of Oxidative Desulfurization with Surfactant-Type Polyoxometalate-Based Ionic Liquids, Fuel Process. Technol, 106: 70-76 (2013).