اصلاح غشاهای نانو تصفیه توسط نانوذره‌های آهن اکسید و گرافن اکسید

نوع مقاله : علمی-پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

چکیده

در این پژوهش تلاش شد با استفاده­ هم­زمان از نانوصفحه­ های گرافن اکسید و نانو ذره‌های آهن اکسید، ویژگی‌های غشاهای پلی اتر سولفون بهبود داده شود. برای این منظور غلظت­ های گوناگون نانوذره‌های Fe3O4 و GO با مجموع غلظت ثابت تهیه شد و اثر افزایش این نانوذره‌ها در شار آب خالص، پس­زنی Na2SO4 و ویژگی‌های ضد گرفتگی مورد بررسی قرار گرفت. برای تجزیه و تحلیل غشاها از طیف سنجی تبدیل فوریه فروسرخ، تصویرهای میکروسکوپ الکترونی روبشی نشر میدانی و میکروسکوپ نیروی اتمی استفاده شد. عملکرد جداسازی غشاها توسط آزمایش­ های زاویه تماس، اندازه ­گیری تخلخل، محتوای آب، شار آب خالص و همچنین پس ­دهی نمک مورد ارزیابی قرار گرفتند. نتیجه‌ها نشان داد که با افزایش نانوذره‌های آهن، شار آب خالص  از 12L /m2h در غشای اصلاح نشده به 48L /m2h در نسبت 375/0: 125/0 از نانوذره‌های Fe3O4:GO افزایش می ­یابد. افزون بر این، برای غشای M4 بیش­ترین میزان پس زنی Na2SO4 (61%) به دست آمد. همچنین بهترین ویژگی‌های ضد گرفتگی در غشا دارای 125/0 درصد وزنی از نانوذره‌های آهن اکسید و 375/0 درصد وزنی از نانوذره‌های گرافن اکسید  با نرخ بازیابی شار 85 درصد دیده شد.

کلیدواژه‌ها

موضوعات


[1] Miao J., Lin H., Wang W., Zhang L.-C., Amphoteric Composite Membranes for Nanofiltration Prepared from Sulfated Chitosan Crosslinked with Hexamethylene Diisocyanate, Chemical Engineering Journal, 234: 132-139 (2013).
[2] Bandehali S., Parvizian F., Moghadassi A.R., Hosseini S.M., Copper and Lead Ions Removal from Water by New PEI Based NF Membrane Modified by Functionalized POSS Nanoparticles, Journal of Polymer Research, 26: 211-219 (2019).
[3] Wang X., Wang H., Wang Y., Gao J., Liu J., Zhang Y., Hydrotalcite/Graphene Oxide Hybrid Nanosheets Functionalized Nanofiltration Membrane For Desalination, Desalination, 451: 209-218 (2019).
[4] Zaman N.K., Rohani R., Mohammad A.W., Isloor A.M., Polyimide-Graphene Oxide Nanofiltration Membrane: Characterizations and Application in Enhanced High Concentration Salt Removal, Chemical Engineering Science, 177: 218-233 (2018).
[5] Hosseini S.M., Afshari M., Fazlali A.R., Koudzari Farahani S., Bandehali S., Van der Bruggen B., Bagheripour E., Mixed Matrix PES-Based Nanofiltration Membrane Decorated by (Fe3O4–Polyvinylpyrrolidone) Composite Nanoparticles with Intensified Antifouling and Separation Characteristics, Chemical Engineering Research and Design, 147: 390-398 (2019).
[6] M. Mertens, T. Van Dyck, C. Van Goethem, A. Gebreyohannes, I.F. Vankelecom, Development of a Polyvinylidene Difluoride Membrane for Nanofiltration, Journal of Membrane Science, 557: 24-29 (2018).
[8] Ismail A.F., Hassan A.R., Effect of Additive Contents on the Performances and Structural Properties of Asymmetric Polyethersulfone (PES) Nanofiltration Membranes, Separation and Purification Technology, 55: 98-109 (2007).
[9] Rahimpour A., Jahanshahi M., Mortazavian N., Madaeni S.S., Mansourpanah Y., Preparation and Characterization of Asymmetric Polyethersulfone and Thin-Film Composite Polyamide Nanofiltration Membranes for Water Softening, Applied Surface Science, 256: 1657-1663 (2010).
[10] Van der Bruggen B., Chemical Modification of Polyethersulfone Nanofiltration Membranes: A Review, Journal of Applied Polymer Science, 114: 630-642 (2009).
[12] Zinadini S., Rostami S., Vatanpour V., Jalilian E., Preparation of Antibiofouling Polyethersulfone Mixed Matrix NF Membrane Using Photocatalytic Activity of ZnO/Mwcnts Nanocomposite, Journal of Membrane Science, 529: 133-141 (2017).
[13] Miller D.J., Dreyer D.R., Bielawski C.W., Paul D.R., Freeman B.D., Surface Modification of Water Purification Membranes, Angewandte Chemie International Edition, 56: 4662-4711 (2017).
[14] Bandehali S., Moghadassi A., Parvizian F., Hosseini S., A New Type of [PEI-Glycidyl POSS] Nanofiltration Membrane with Enhanced Separation and Antifouling Performance, Korean Journal of Chemical Engineering, 36: 1657-1668 (2019).
[16] Lingamdinne L.P., Koduru J.R., Karri R.R., A Comprehensive Review of Applications of Magnetic Graphene Oxide Based Nanocomposites for Sustainable Water Purification, Journal of Environmental Management, 231: 622-634 (2019).
[17] Ng L.Y., Mohammad A.W., Leo C.P., Hilal N., Polymeric Membranes Incorporated with Metal/Metal Oxide Nanoparticles: A Comprehensive Review, Desalination, 308: 15-33 (2013).
[18] Zangeneh H., Zinatizadeh A.A., Zinadini S., Feyzi M., Bahnemann D.W., Preparation and Characterization of A Novel Photocatalytic Self-Cleaning PES Nanofiltration Membrane by Embedding A Visible-Driven Photocatalyst Boron Doped-TiO2SiO2/Cofe2O4 Nanoparticles, Separation Purification Technology, 209: 764-775 (2019).
[20] Gholami A., Moghadassi A., Hosseini S., Shabani S., Gholami F., Preparation And Characterization of Polyvinyl Chloride Based Nanocomposite Nanofiltration-Membrane Modified by Iron Oxide Nanoparticles for Lead Removal from Water, Journal of Industrial and Engineering Chemistry, 20: 1517-1522 (2014).
[21] Moghadassi A., Bagheripour E., Hosseini S., Investigation of the Effect of Tetrahydrofuran and Acetone as Cosolvents in Acrylonitrile–Butadiene–Styrene–Based Nanofiltration Membranes, Journal of Applied Polymer Science, 134: 1-6 (2017).
[22] Giwa A., Akther N., Dufour V., Hasan S.W., A Critical Review on Recent Polymeric and Nano-Enhanced Membranes for Reverse Osmosis, Rsc Advances, 6: 8134-8163 (2016).
[23] He F., Fan J., Ma D., Zhang L., Leung C., Chan H.L.J.C., The Attachment of Fe3O4 Nanoparticles to Graphene Oxide by Covalent Bonding, Carbone, 48: 3139-3144 (2010).
[24] Fan L., Luo C., Li X., Lu F., Qiu H., Sun M., Fabrication of Novel Magnetic Chitosan Grafted with Graphene Oxide to Enhance Adsorption Properties for Methyl Blue, Journal of Hazardous materials, 215: 272-279 (2012).
[25] Lai G., Lau W., Goh P., Ismail A., Yusof N., Tan Y., Graphene Oxide Incorporated Thin Film Nanocomposite Nanofiltration Membrane for Enhanced Salt Removal Performance, Desalination, 387: 14-24 (2016).
[26] Zhang M., Guan K., Ji Y., Liu G., Jin W., Xu N., Controllable Ion Transport by Surface-Charged Graphene Oxide Membrane, Nature communications, 10: 1-8 (2019).
[27] Han Y., Xu Z., Gao C., Ultrathin Graphene Nanofiltration Membrane for Water Purification, Advance Functional Materials, 23: 3693-3700 (2013).
[28] Zhang P., Gong J.-L., Zeng G.-M., Song B., Liu H.-Y., Huan S.-Y., Li J., Ultrathin Reduced Graphene Oxide/MOF Nanofiltration Membrane with Improved Purification Performance at Low Pressure, Chemosphere, 204: 378-389 (2018).
[29] Bagheripour E., Moghadassi A., Hosseini S., Van der Bruggen B., Parvizian F., Novel Composite Graphene Oxide/Chitosan Nanoplates Incorporated into PES Based Nanofiltration Membrane: Chromium Removal and Antifouling Enhancement, Journal of Industrial and Engineering Chemistry, 62: 311-320 (2018).
[30] Gao P., Liu Z., Tai M., Sun D.D., Ng W., Multifunctional Graphene Oxide–Tio2 Microsphere Hierarchical Membrane for Clean Water Production, Applied Catalysis B: Environmental, 138: 17-25 (2013).
[31] Zhang J., Xu Z., Shan M., Zhou B., Li Y., Li B., Niu J., Qian X., Synergetic Effects of Oxidized Carbon Nanotubes and Graphene Oxide on Fouling Control and Anti-Fouling Mechanism of Polyvinylidene Fluoride Ultrafiltration Membranes, Journal of Membrane Science, 448: 81-92 (2013).
[32] Han Y., Jiang Y., Gao C., High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes, ACS Applied Materials Interfaces, 7: 8147-8155 (2015).
[33] Deng J.-H., Zhang X.-R., Zeng G.-M., Gong J.-L., Niu Q.-Y., Liang J., Simultaneous Removal of Cd (II) and Ionic Dyes from Aqueous Solution Using Magnetic Graphene Oxide Nanocomposite as An Adsorbent, Chemical Engineering Journal, 226: 189-200 (2013).
[34] Wu H., Tang B., Wu P., Development of Novel Sio2–GO Nanohybrid/Polysulfone Membrane with Enhanced Performance, Journal of Membrane Science, 451: 94-102 (2014).
[35] He F., Fan J., Ma D., Zhang L., Leung C., Chan H.L, The Attachment of Fe3O4 Nanoparticles to Graphene Oxide by Covalent Bonding, Carbon, 48: 3139-3144 (2010).
[36] Sivakumar M., Mohan D.R., Rangarajan R., Studies on Cellulose Acetate-Polysulfone Ultrafiltration Membranes: II. Effect of Additive Concentration, Journal of Membrane Science, 268: 208-219 (2006).
[37] Van der Bruggen B., Everaert K., Wilms D., Vandecasteele C., Application of Nanofiltration for Removal of Pesticides, Nitrate and Hardness from Ground Water: Rejection Properties and Economic Evaluation, Journal of Membrane Science, 193: 239-248 (2001).
[38] Nemati M., Hosseini S., Thin Film Heterogeneous Ion Exchange Membranes Prepared By Interfacial Polymerization Of Paa-Co-Iron-Nickel Oxide Nanoparticles On Polyvinylchloride Based Substrate, International Journal of Engineering-Transactions C: Aspects, 29: 297-305 (2016).
[39] Nidal Hilal H.A.Z., Darwish N., Mohammad A.W.J.S.s., Nanofiltration of Magnesium Chloride, Sodium Carbonate, and Calcium Sulphate in Salt Solutions, Technology, 40: 3299-3321(2005).
[40] Bagheripour E., Hosseini S., Hamidi A., Moghadassi A., Fabrication and Characterization of Novel Mixed Matrix Polyethersulfone Based Nanofiltration Membrane Modified by Ilmenite, International Journal of Engineering Transactions A: Basics, 30: 7-14 (2017).
[41] Nilsson M., Trägårdh G., Östergren K., The Influence of Sodium Chloride on Mass Transfer in a Polyamide Nanofiltration Membrane at Elevated Temperatures, Journal of Membrane Science, 280(1-2): 928-936 (2006).
[43] Daraei P., Madaeni S.S., Ghaemi N., Salehi E., Khadivi M.A., Moradian R., Astinchap, Novel Polyethersulfone Nanocomposite Membrane Prepared by PANI/Fe3O4 Nanoparticles with Enhanced Performance for Cu (II) Removal From Water, Journal of Membrane Science, 415: 250-259 (2012).
[44] Ghaemi N., Madaeni S.S., Alizadeh A., Daraei P., Vatanpour V., Falsafi M., Fabrication of Cellulose Acetate/Sodium Dodecyl Sulfate Nanofiltration Membrane: Characterization and Performance In Rejection of Pesticides, Desalination, 290: 99-106 (2012).
[46] Baghbanzadeh M., Rana D., Matsuura T., Lan C.Q., Effects of Hydrophilic CuO Nanoparticles on Properties and Performance of PVDF VMD Membranes, Desalination, 369: 75-84 (2015).
[47] Shen L., Bian X., Lu X., Shi L., Liu Z., Chen L., Hou Z., Fan K., Preparation and Characterization of ZnO/Polyethersulfone (PES) Hybrid Membranes, Desalination, 293: 21-29 (2012).
[48] Moochani M., Moghadassi A., Hosseini S.M., Bagheripour E., Parvizian F., Fabrication of Novel Polyethersulfone Based Nanofiltration Membrane by Embedding Polyaniline-Co-Graphene Oxide Nanoplates, Korean Journal of Chemical Engineering, 33: 2674-2683 (2016).
[49] Koulivand H., Shahbazi A., Vatanpour V., Fabrication and Characterization of a High-Flux and Antifouling Polyethersulfone Membrane for Dye Removal by Embedding Fe3O4-MDA Nanoparticles, Chemical Engineering Research and Design, 145: 64-75 (2019).
[50] Han J.-L., Xia X., Tao Y., Yun H., Hou Y.-N., Zhao C.-W., Luo Q., Cheng H.-Y., Wang A.-J., Shielding Membrane Surface Carboxyl Groups by Covalent-Binding Graphene Oxide to Improve Anti-Fouling Property and the Simultaneous Promotion of Flux, Water Research, 102: 619-628 (2016).
[51] Li X., Zhao C., Yang M., Yang B., Hou D., Wang T., Reduced Graphene Oxide-NH2 Modified Low Pressure Nanofiltration Composite Hollow Fiber Membranes with Improved Water Flux and Antifouling Capabilities, Applied Surface Science, 419: 418-428 (2017).
[52] Han J.-L., Xia X., Haider M.R., Jiang W.-L., Tao Y., Liu M.-J., Wang H.-C., Ding Y.-C., Hou Y.-N., Cheng H.-Y., Functional Graphene Oxide Membrane Preparation for Organics/Inorganic Salts Mixture Separation Aiming at Advanced Treatment of Refractory Wastewater, Science of the Total Environment, 628: 261-270 (2018).
[53] Daer S., Kharraz J., Giwa A., Hasan S.W., Recent Applications of Nanomaterials in Water Desalination: A Critical Review and Future Opportunities, Desalination, 367: 37-48 (2015).
[54] Gholami N., Mahdavi H., Nanofiltration Composite Membranes of Polyethersulfone and Graphene Oxide and Sulfonated Graphene Oxide, Advances in Polymer Technology, 13: 1-13 (2018).
[55] Ganesh B., Isloor A.M., Ismail A.F., Enhanced Hydrophilicity and Salt Rejection Study of Graphene Oxide-Polysulfone Mixed Matrix Membrane, Desalination, 313: 199-207 (2013).