مروری کوتاه بر غشاهای مرکب دارای نانولوله‌کربنی مورد استفاده در فرایند آب به‌ویژه نمک‌زدایی

نوع مقاله : مروری

نویسندگان

گروه مهندسی شیمی، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

 ساخت غشا‌های نانومرکب دارای نانولوله‌های کربنی یکی از گسترده‌ترین زمینه‌های پژوهش­ های در دهه‌های اخیر به‌شمار می‌آید و نتیجه­ ها و پژوهش­ های به ­دست آمده تا به امروز شایان توجه می‌باشد. با این وجود دستاوردهای به دست آمده در مقایسه با دورنمایی که برای این فناوری نوین تصور می‌شود، بسیار ناچیز بوده و سطح آمادگی فناوری آن هنوز با مرحله تجاری شدن بسیار فاصله دارد. توانایی و اهمیت کاربرد این‌ نوع غشاها به ویژه در فرایند‌های تصفیه آب و نمک‌زدایی، همه کشورها را بر آن داشته است تا با تمرکز بر پژوهش­ ها مرتبط در راستای توسعه فناوری چنین غشاهایی پیش روند. کشف ویژگی نوین نانولوله‌های کربنی در شرایط متفاوت و در بسترهای گوناگون، تأثیر ردیف‌سازی و چیدمان این نانوذره در شبکه‌ی نانوماده مرکب، چگونگی تعامل این نانوذره­ ها با مواد آلاینده و مولکول‌های نمک در فرایند تصفیه آب، راه‌کارهای نوین بازیابی و افزایش طول‌ عمر غشا موجب شده است که ساخت غشاهای دارای نانولوله‌های کربنی به شاخه‌ی بزرگی در حوزه فناوری‌های غشایی تبدیل شود. از این‌رو بررسی و مرور روش‌های نوین ساخت، چگونگی به‌کارگیری نانولوله‌های کربنی و تبیین سازوکارها و مبانی حاکم در این نوع از غشاها از جمله موضوع­ های مورد بحث در این حیطه به‌شمار آمده و نتیجه ­های آن منجر به تبیین روش‌های به­ کارگیری ارزان‌تر، انعطاف‌پذیرتر و کارآمدتر خواهد شد. در این مقاله به مرور تازه ­ترین دسته‌بندی غشاهای پلیمری دارای نانولوله‌های کربنی قابل کاربرد در فرایندهای آب به ویژه نمک‌زدایی پرداخته و نقطه­ های ضعف و قوت هر کدام مورد بازبینی و مقایسه قرار گرفته است.

کلیدواژه‌ها

موضوعات


[1] Das R., Ali M.E., Hamid S.B.A., Ramakrishna S., Chowdhury Z.Z., Carbon Nanotube Membranes for Water Purification: A Bright Future in Water Desalination. Desalination,  336: 97-109 (2014).
[2] Khaksar E., Afarani M.S., Samimi A., In Situ Solvothermal Crystallization of Tio2 Nanostructure on Alumina Granules for Photocatalytic Wastewater Treatment. J Journal of Materials Engineering23(1): 92-100 (2014).
[3] Shayesteh M., Samimi A., Shafiee Afarani M., Khorram M., Synthesis of Titania–Γ-Alumina Multilayer Nanomembranes on Performance-Improved Alumina Supports for Wastewater Treatment. Desalination and Water Treatment57(20): 9115-9122 (2016).
[4] Zheng J., Li M., Yu K., Hu J., Zhang X., Wang L., Sulfonated Multiwall Carbon Nanotubes Assisted Thin-Film Nanocomposite Membrane with Enhanced Water Flux and Anti-Fouling Property. Journal of Membrane Science,  524: 344-353 (2017).
[6] Madaeni S.S., Akbarzadeh Arbatan T., Preparation and Characterization of Microfiltration Membrane Embedded with Silver Nano-Particles. Iranian Journal of Chemistry and Chemical Engineering (IJCCE),  29(4): 105-111 (2010).
[7] Kambarani M, Bahmanyar H., Mousavian M.A., Mousavi SM, Crossflow Filtration of Sodium Chloride Solution by A Polymeric Nanofilter: Minimization of Concentration Polarization by a Novel Backpulsing Method. Iranian Journal of Chemistry and Chemical Engineering (IJCCE),  35(4): 135-141 (2016).
[8] Lau W.J., Ismail A.F., Misdan N., Kassim M.A., A Recent Progress in Thin Film Composite Membrane: A Review. Desalination287: 190-199 (2012).
[9] Azelee I.W., Goh P., Lau W., Ismail A., Facile Acid Treatment of Multiwalled Carbon Nanotube-Titania Nanotube Thin Film Nanocomposite Membrane for Reverse Osmosis Desalination. Journal of Cleaner Production181: 517-526 (2018).
[10] Tofighy M.A., Shirazi Y., Mohammadi T., Pak A., Salty Water Desalination Using Carbon Nanotubes Membrane. Chemical Engineering Journal168(3): 1064-1072 (2011).
[11] Beigmoradi R.S., Mohebbi-Kalhori D., Engineering of Oriented Carbon Nanotubes in Composite Materials. Beilstein J Nanotechnol9: 415–435 (2018).
[12] Taleshi F., Yousefi M., Removal of Cd2+ from Aqueous Solution by Nickel Oxide/CNT Nanocomposites. Iran. J. Chem. Chem. Eng. (IJCCE), 38(1): 141-145 (2019).
[13] بیگمرادی ر، "خالص سازی و مشخصه سازی نانو لوله­ های کربنی". دانشگاه اصفهان، پایان نامه کارشناسی ارشد (1388).
[14] Roy K., Mukherjee A., Maddela N.R., Chakraborty S., Shen B., Li M., Du D., Peng Y., Lu F., García Cruzatty L.C., Outlook on The Bottleneck of Carbon Nanotube in Desalination and Membrane-Based Water Treatment—A Review. Journal of Environmental Chemical Engineering8(1): 103572 (2020).
[15] Ali S., Rehman S.A.U., Luan H.-Y., Farid M.U., Huang H., Challenges and Opportunities in Functional Carbon Nanotubes for Membrane-Based Water Treatment and Desalination. Science of the Total Environment646: 1126-1139 (2019).
[17] Antunes E.F., Lobo A.O., Corat E.J., Trava-Airoldi V.J., Influence of  Diameter in the Raman Spectra of Aligned Multi-Walled Carbon Nanotubes. Carbon,  45(5): 913-921 (2007).
[18] Wu M.-B., Lv Y., Yang H.-C., Liu L.-F., Zhang X., Xu Z.-K., Thin Film Composite Membranes Combining Carbon Nanotube Intermediate Layer and Microfiltration Support for High Nanofiltration Performances. Journal of Membrane Science515: 238-244 (2016).
[19] Zhao H., Qiu S., Wu L., Zhang L., Chen H., Gao C., Improving the Performance of Polyamide Reverse Osmosis Membrane by Incorporation of Modified Multi-Walled Carbon Nanotubes. Journal of Membrane Science450: 249-256 (2014).
[20] Zhao H., Zhou Z., Dong H., Zhang L., Chen H., Hou L., A Facile Method to Align Carbon Nanotubes on Polymeric Membrane Substrate. Scientific Reports, 3: 3480 (2013).
[21] بیگمرادی ر، "مطالعه بر روی ساخت یک غشای لایه‌ی نازک مرکب شامل نانولوله‌های کربنی ردیف شده به روش ریزسازی الکتروهیدرودینامیکی  برای کاربرد در تصفیه آب"، دانشگاه سیستان و بلوچستان،  زاهدان (1397)
[22] Goh K., Karahan H.E., Wei L., Bae T.-H., Fane A.G., Wang R., Chen Y., Carbon Nanomaterials for Advancing Separation Membranes: A Strategic Perspective. Carbon,  109: 694-710 (2016).
[23] Goh P.S., Ismail A.F., Ng B.C., Carbon Nanotubes for Desalination: Performance Evaluation and Current Hurdles. Desalination308: 2-14 (2013).
[24] Upadhyayula V.K.K., Deng S., Mitchell M.C., Smith G.B., Application of Carbon Nanotube Technology for Removal of Contaminants in Drinking Water: A Review. Science of the Total Environment408(1): 1-13 (2009).
[25] Shokrgozar Eslah S., Shokrollahzadeh S., Moini Jazani O., Samimi A., Forward Osmosis Water Desalination: Fabrication of Graphene Oxide-Polyamide/Polysulfone Thin-Film Nanocomposite Membrane with High Water Flux and Low Reverse Salt Diffusion. J. Separation Science Technology53(3): 573-583 (2018).
[26] Zarei A.R., Pourabdollahi H., Synthesis of Carbon Nanotubes on Cerium-Substituted Barium Ferrite Substrate by Chemical Vapor Deposition for Preparation of a Microwave Absorbing Nanocomposite. Iranian Journal of Chemistry And Chemical Engineering (IJCCE): 39(1):1-10  (2020).
[27] Davood Abadi Farahani M.H., Vatanpour V., Polymer/Carbon Nanotubes Mixed Matrix Membranes for Water Purification. In: "Nanoscale Materials in Water Purification". Edited by Thomas S, Pasquini D., Leu S.-Y., Gopakumar D..A: Elsevier; 87-110 (2019).
[28] Khamseh S., Abdollahzadeh Davani F., Samimi A., the Effects of RF-Sputtered TiO2 Top Layer on Pore Structure of Composite Ceramic Membranes. Surface and Coatings Technology258: 1256-1258 (2014).
[ 29] جعفری نژاد  ش.، ابوالقاسمی ح.، احمدی س.ج.، قربانیان س.، ویژگی­ های مکانیکی نانوکامپوزیت­ های پلی پروپیلن ـ خاک رس تهیه شده با روش مخلوط مذاب. نشریه شیمی و مهندسی شیمی ایران، 30(2): 61-67 (1390)
[30] Almasi D., Abbasi K., Sultana N., Lau W.J., Study on TiO2 Nanoparticles Distribution in Electrospun Polysulfone/TiO2 Composite Nanofiber. Iranian Journal of Chemistry and Chemical Engineering (IJCCE),  36(2): 49-53 (2017).
[31] Yang G., Xie Z., Cran M., Ng D., Gray S., Enhanced Desalination Performance of Poly (Vinyl Alcohol)/Carbon Nanotube Composite Pervaporation Membranes via Interfacial Engineering. Journal of Membrane Science579: 40-51 (2019).
[32] Feng J., Ding H., Ren C., Ma Y., Pumping of Water by Rotating Chiral Carbon Nanotube. Nanoscale6(22):  13606-13612 (2014).
[33] Tu Q., Yang Q., Wang H., Li S,. Rotating Carbon Nanotube Membrane Filter for Water Desalination. Scientific Reports,  6: 26183 (2016).
[34] Mittal G., Dhand V., Rhee K.Y., Park S.-J., Lee W.R., A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites. Journal of Industrial and Engineering Chemistry,  21: 11-25 (2015).
[35] Safadi B., Andrews R., Grulke E., Multiwalled Carbon Nanotube Polymer Composites: Synthesis and Characterization of Thin Films. Journal of Applied Polymer Science,  84(14): 2660-2669 (2002).
[36] Ahmadi M., Jahanmardi R., Mohammadizade M., Preparation of PMMA/Mwnts Nanocomposite Microcellular Foams by In-Situ Generation of Supercritical Carbon Dioxide. Iranian Journal of Chemistry and Chemical Engineering (IJCCE)35(2): 63-72 (2016).
[37] Gupta T.K., Kumar S., Fabrication of Carbon Nanotube/Polymer Nanocomposites. In: "Carbon Nanotube-Reinforced Polymers". Elsevier; 61-81 (2018).
[38] Suhr J., Zhang W., Ajayan P.M., Koratkar N.A., Temperature-Activated Interfacial Friction Damping in Carbon Nanotube Polymer Composites. Nano Letters6(2): 219-223 (2006).
[39] De Oliveira A.D., Beatrice C.A.G., Polymer Nanocomposites with Different Types of Nanofiller. in: "Nanocomposites-Recent Evolutions", Intechopen; (2018).
[40] Kanoun O., Müller C., Benchirouf A., Sanli A., Dinh T., Al-Hamry A., Bu L., Gerlach C., Bouhamed A., Flexible Carbon Nanotube Films for High Performance Strain Sensors. Sensors,  14(6): 10042-10071 (2014).
[41] Kanoun O., Müller C., Benchirouf A., Sanli A., Gerlach C., Bouhamed A., Carbon Nanotube Polymer Composites for High Performance Strain Sensors. "2015 1st Workshop on Nanotechnology In Instrumentation and Measurement (NANOFIM)": 1-4 (2015).
[42] Kaur G., Adhikari R., Cass P., Bown M., Evans M.D.M., Vashi A.V., Gunatillake P., Graphene/Polyurethane Composites: Fabrication and Evaluation of Electrical Conductivity, Mechanical Properties and Cell Viability. RSC Advances,  5(120): 98762-98772 (2015).
[43] Liu Y., Kumar S., Polymer/Carbon Nanotube Nano Composite Fibers–A Review. ACS Applied Materials & Interfaces 6(9): 6069-6087 (2014).
[44] Morgan R.W., Rosario A.G., Effect of Processing on The Properties and Morphology of MWCNT-Polymer Networks. Materials Research Express:  (2020).
[45] Fawaz J., Mittal V., Polymer Nanotube Nanocomposites, A Review of Synthesis Methods, Properties and Applications. Polymer Nanotube Nanocomposites: Synthesis, Properties, and Applications. 1-44 (2014).
[47] Ihsanullah: Carbon Nanotube Membranes for Water Purification, Developments, Challenges, and Prospects for the Future. Separation and Purification Technology209: 307-337 (2019).
[48] Wu Y., Xia Y., Jing X., Cai P., Igalavithana A.D., Tang C., Tsang D.C.W., Ok Y.S., Recent Advances in Mitigating Membrane Biofouling Using Carbon-Based Materials. Journal of Hazardous Materials382: 120976 (2020).
[49] Lee B., Baek Y., Lee M., Jeong D.H., Lee H.H., Yoon J., Kim Y.H., A Carbon Nanotube Wall Membrane for Water Treatment. Nature Communications,  6: 7109 (2015).
[50] Pendergast M.M., Hoek E.M., A Review of Water Treatment Membrane Nanotechnologies. Energy & Environmental Science4(6): 1946-1971 (2011).
[51] Yang H.Y., Han Z.J., Yu S.F., Pey K.L., Ostrikov K., Karnik R., Carbon Nanotube Membranes with Ultrahigh Specific Adsorption Capacity for Water Desalination and Purification. Nature Communications4: 2220 (2013).
[52] Baek Y., Kim C., Seo D.K., Kim T., Lee J.S., Kim Y.H., Ahn K.H., Bae S.S., Lee S.C., Lim J., High Performance and Antifouling Vertically Aligned Carbon Nanotube Membrane for Water Purification. Journal of Membrane Science,  460: 171-177 (2014).
[53] Takizawa Y., Inukai S., Araki T., Cruz-Silva R., Uemura N., Morelos-Gomez A., Ortiz-Medina J., Tejima S., Takeuchi K., Kawaguchi T., Antiorganic Fouling and Low-Protein Adhesion on Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposite. ACS Applied Materials & Interfaces9(37): 32192-32201 (2017).
[54] Ihsanullah, Abbas A., Al-Amer A.M., Laoui T., Al-Marri M.J., Nasser M.S., Khraisheh M., Atieh M.A, Heavy Metal Removal from Aqueous Solution by Advanced Carbon Nanotubes: Critical Review of Adsorption Applications. Separation and Purification Technology157: 141-161 (2016).
[55] Ren X., Chen C., Nagatsu M., Wang X., Carbon Nanotubes as Adsorbents in Environmental Pollution Management: A Review. Chemical Engineering Journal,  170(2): 395-410 (2011).
[56] Morgan K., Engineered Carbon Nanotube Membranes May Help Solve Our Growing Demand for Desalination, Online Web Page: Https://Www.Elsevier.Com/Connect/Atlas-Award-Quenching-The-Worlds-Thirst-For-Seawater
[57] Goh P.S., Wong T.W., Lim J.W., Ismail A.F., Hilal N., Innovative and Sustainable Membrane Technology for Wastewater Treatment and Desalination Application. In: "Innovation Strategies in Environmental Science". Edited by Galanakis C.M.: Elsevier, 291-319 (2020):.
[58] Sharma M., Sharma A., Polymer Nanocomposite Membranes for Water Treatment. in: "Intelligent Communication, Control and Devices". Springer; 865-874 (2020).
[59] Ali Z., Ahmad R., Nanotechnology for Water Treatment. In: "Environmental Nanotechnology" Volume 3. Springer International Publishing; 143-163 (2020).
[60] Kalra A., Garde S., Hummer G., Osmotic Water Transport Through Carbon Nanotube Membranes. Proceedings of the National Academy of Sciences100(18): 10175 (2003).
[61] Corry B., Designing Carbon Nanotube Membranes for Efficient Water Desalination. The Journal of Physical Chemistry B112(5): 1427-1434 (2008).
[62] Fornasiero F., Park H.G., Holt J.K., Stadermann M, Grigoropoulos CP, Noy A, Bakajin O, Ion Exclusion by Sub-2-Nm Carbon Nanotube Pores. Proceedings of the National Academy of Sciences105(45): 17250 (2008).
[63] Das R., Abd Hamid S.B., Ali M.E., Ismail A.F., Annuar M.S.M., Ramakrishna S, Multifunctional Carbon Nanotubes in Water Treatment: the Present, Past and Future. Desalination354: 160-179 (2014).
[64] Ahn C.H., Baek Y., Lee C., Kim S.O., Kim S., Lee S., Kim S.-H., Bae S.S., Park J., Yoon J., Carbon Nanotube-Based Membranes: Fabrication and Application To Desalination. Journal of Industrial And Engineering Chemistry18(5): 1551-1559 (2012).
[65] Dumée L., Germain V., Sears K., Schütz J., Finn N,. Duke M., Cerneaux S., Cornu D., Gray S., Enhanced Durability and Hydrophobicity of Carbon Nanotube Bucky Paper Membranes in Membrane Distillation. Journal of Membrane Science,  376(1): 241-246 (2011).
[66] Zarrabi H., Yekavalangi M.E., Vatanpour V., Shockravi A., Safarpour M., Improvement in Desalination Performance of Thin Film Nanocomposite Nanofiltration Membrane Using Amine-Functionalized Multiwalled Carbon Nanotube. Desalination,  394: 83-90 (2016).
[68] Vatanpour V., Esmaeili M., Farahani M.H.D.A., Fouling Reduction and Retention Increment of Polyethersulfone Nanofiltration Membranes Embedded by Amine-Functionalized Multi-Walled Carbon Nanotubes. Journal of Membrane Science,  466: 70-81 (2014).
[69] Kim E.-S., Hwang G., El-Din M.G., Liu Y., Development of Nanosilver and Multi-Walled Carbon Nanotubes Thin-Film Nanocomposite Membrane for Enhanced Water Treatment. Journal of Membrane Science394: 37-48 (2012).
[70] Alshahrani A.A., Algamdi M.S., Alsohaimi I.H., Nghiem L.D., Tu K.L., Al-Rawajfeh A.E., Panhuis M, the Rejection of Mono- and Di-Valent Ions From Aquatic Environment by MWNT/Chitosan Buckypaper Composite Membranes: Influences of Chitosan Concentrations. Separation and Purification Technology234: 116088 (2020).
[71] Zhu B., Kou H., Liu Z., Wang Z., Macharia D.K., Zhu M., Wu B., Liu X., Chen Z., Flexible and Washable CNT-Embedded PAN Nonwoven Fabrics for Solar-Enabled Evaporation and Desalination of Seawater. ACS Applied Materials & Interfaces,  11(38): 35005-35014 (2019).
[72] Lee J.-G., Lee E.-J., Jeong S., Guo J., An A.K., Guo H., Kim J., Leiknes T., Ghaffour ., Theoretical Modeling and Experimental Validation of Transport and Separation Properties of Carbon Nanotube Electrospun Membrane Distillation. Journal of Membrane Science526: 395-408 (2017).
[75] Kim H.J., Baek Y., Choi K., Kim D.-G., Kang H., Choi Y.-S., Yoon J., Lee J.-C., the Improvement of Antibiofouling Properties of a Reverse Osmosis Membrane by Oxidized CNTs. Rsc Advances4(62): 32802-32810 (2014).
[76] Chan W.-F., Chen H.-Y., Surapathi A., Taylor M.G., Shao X., Marand E., Johnson J.K., Zwitterion Functionalized Carbon Nanotube/Polyamide Nanocomposite Membranes for Water Desalination. Acs Nano,  7(6): 5308-5319 (2013).
[77] Jin L., Bower C., Zhou O., Alignment of Carbon Nanotubes in a Polymer Matrix By Mechanical Stretching. Applied Physics Letters,  73(9): 1197-1199 (1998).
[78] Iakoubovskii K., Techniques of Aligning Carbon Nanotubes. Central European Journal of Physics, 7.4: 645-653 (2009).
[79] Xie X.-L., Mai Y.-W., Zhou X.-P., Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review. Materials Science and Engineering: R: Reports,  49(4): 89-112 (2005).
[80] Sun X., Chen T., Yang Z., Peng H., The Alignment of Carbon Nanotubes: an Effective Route to Extend Their Excellent Properties to Macroscopic Scale. Accounts of Chemical Research46(2): 539-549 (2013).
[81] Haslam M.D., Raeymaekers B., Aligning Carbon Nanotubes Using Bulk Acoustic Waves to Reinforce Polymer Composites. Composites Part B: Engineering60: 91-97 (2014).
[82] Chen W., Tao X., Production and Characterization of Polymer Nanocomposite with Aligned Single Wall Carbon Nanotubes. Applied Surface Science252(10): 3547-3552 (2006).
[83] Ren Z., Lan Y., Wang Y, Aligned Carbon Nanotubes: Physics, Concepts, Fabrication and Devices: Springer Science & Business Media; (2012).
[84] Cooper C.A., Ravich D., Lips D., Mayer J., Wagner H.D., Distribution and Alignment of Carbon Nanotubes and Nanofibrils in A Polymer Matrix. Composites Science and Technology62(7): 1105-1112 (2002).
[85] Paul C.P. Watts S.M.L., Ernest Mendoz S., Ravi P. Silva, Polymer Supported Carbon Nanotube Arrays for Field Emission and Sensor Devices. Applied Physics Letters,  89(10): 103113 (2006).
[86] Lanticse L.J., Tanabe Y., Matsui K., Kaburagi Y., Suda K., Hoteida M., Endo M., Yasuda E., Shear-Induced Preferential Alignment of Carbon Nanotubes Resulted in Anisotropic Electrical Conductivity of Polymer Composites. Carbon44(14): 3078-3086 (2006).
[87] Dan B., Irvin G.C., Pasquali M., Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films. ACS Nano3(4): 835-843 (2009).
[89] Yao J., Bastiaansen C.W,. Peijs T., High Strength and High Modulus Electrospun Nanofibers. Fibers2(2): 158-186 (2014).
[90] Kuzmenko V., Kalogeropoulos T., Thunberg J., Johannesson S., Hägg D., Enoksson P., Gatenholm P., Enhanced Growth of Neural Networks on Conductive Cellulose-Derived Nanofibrous Scaffolds. Materials Science and Engineering: C58: 14-23 (2016).
[91] Dai Y., Yao J., Song Y., Liu X., Wang S., Yuan Y., Enhanced Performance of Immobilized Laccase in Electrospun Fibrous Membranes by Carbon Nanotubes Modification and its Application for Bisphenol A Removal from Water. Journal of Hazardous Materials317: 485-493 (2016).
[92] Saleem H., Trabzon L., Kilic A., Zaidi S.J., Recent Advances in Nanofibrous Membranes: Production and Applications in Water Treatment and Desalination. Desalination478: 114178 (2020).
[93] Zhang L., Xu W., Luo X.G., Wang J.N., High-Performance Carbon Nanotube Based Composite Film from Layer-By-Layer Deposition. Carbon90: 215-221 (2015).
[94] Yu B., Liu X., Cong H., Wang Z., Lian Y., Tang J., Fabrication of Stable Ultrathin Transparent Conductive Carbon Nanotube Micropatterns Using Layer-by-Layer Self-Assembly. Fullerenes, Nanotubes and Carbon Nanostructures23(4): 320-325 (2015).
[95] Wang B., Liu L., Huang L., Chi L., Liang G., Yuan L., Gu A., Fabrication and Origin of High-K Carbon Nanotube/Epoxy Composites with Low Dielectric Loss Through Layer-by-Layer Casting Technique. Carbon,  85: 28-37 (2015).
[96] Liu Y., Liu Y., Feng H., Wu Y., Joshi L., Zeng X., Li J., Layer-By-Layer Assembly of Chemical Reduced Graphene and Carbon Nanotubes for Sensitive Electrochemical Immunoassay. Biosensors and Bioelectronics35(1): 63-68 (2012).
[97] Liu L., Son M., Chakraborty S., Bhattacharjee C., Choi H., Fabrication of Ultra-Thin Polyelectrolyte/Carbon Nanotube Membrane by Spray-Assisted Layer-By-Layer Technique: Characterization and Its Anti-Protein Fouling Properties for Water Treatment. Desalination and Water Treatment,  51(31-33): 6194-6200 (2013).
[98] Yildiz O., Bradford P.D., Aligned Carbon Nanotube Sheet High Efficiency Particulate Air Filters. Carbon,  64: 295-304 (2013).
[99] Wang X., Yong Z.Z., Li Q.W., Bradford P.D., Liu W., Tucker D.S., Cai W., Wang H., Yuan F.G., Zhu Y.T., Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites. Materials Research Letters,  1(1): 19-25 (2013).
[100] Giancane G., Bettini S., Valli L., State of Art in the Preparation, Characterisation and Applications of Langmuir–Blodgett Films of Carbon Nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects354(1): 81-90 (2010).
[101] James Hedberg L.D., Jun Jiao, Air Flow Technique for Large Scale Dispersion and Alignment of Carbon Nanotubes on Various Substrates. Applied Physics Letters,  86(14): 143111 (2005).
[102] Lisetski L., Soskin M., Lebovka N., Carbon Nanotubes in Liquid Crystals: Fundamental Properties and Applications. Physics of Liquid Matter: Modern Problems, Springer, 243-297 (2015).
[103] Lagerwall J.P.F., Scalia G., Haluska M., Dettlaff-Weglikowska U., Giesselmann F., Roth S., Simultaneous Alignment and Dispersion of Carbon Nanotubes with Lyotropic Liquid, Crystals. Physica Status Solidi (B)243(13): 3046-3049 (2006).
[104] Zakri C., Poulin P., Nematic Phase Formation in Suspensions of Carbon Nanotubes. in: 'Liquid Crystals with Nano and Microparticles". World Scientific; 775-796 (2017).
[105] Deheer W.A., Bacsa W.S., Châtelain A., Gerfin T., Humphrey-Baker R., Forro L., Ugarte D, Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties. Science268(5212): 845-847 (1995).
[107] Cesano F., Scarano D., Dispersion of Carbon-Based Materials (Cnts, Graphene) in Polymer Matrices. in: "Carbon for Sensing Devices". Springer, 43-75 (2015).
[108] Kędzierski K., Barszcz B., Biadasz A., Matczak M., Wróbel D., Preparation and Studies of Transparent Conductive Monolayers of Multiwall Carbon Nanotubes on Quartz and Flexible Polymer with the Use of Modified Langmuir Technique. Progress in Organic Coatings,  86: 86-95 (2015).
[110] Ding X., Li P., Lin S.-C.S., Stratton Z.S., Nama N., Guo F., Slotcavage D., Mao X., Shi J., Costanzo F. Huang, T.J., Surface Acoustic Wave Microfluidics. Lab. on a Chip13(18): 3626-3649 (2013).
[112] Ubrig N., Shaver J., Parra-Vasquez A.N.G., Pasquali M., Kono J., Fagan J., Portugall O., Dynamic Alignment of Single-Walled Carbon Nanotubes in Pulsed Magnetic Fields. Journal of Low Temperature Physics159(1-2): 262-266 (2010).
[114] Lemieux M.C., Roberts M., Barman S., Jin Y.W., Kim J.M., Bao Z., Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors. Science321(5885): 101-104 (2008).
[115] Shekhar S., Stokes P., Khondaker S.I., Ultrahigh Density Alignment of Carbon Nanotube Arrays by Dielectrophoresis. ACS Nano5(3): 1739-1746 (2011).
[116] Beigmoradi R., Aghamiri F., The Effects of Suspending Medium on Dielectrophoretic Systems for Separating and Sorting Carbon Nanotubes. Journal of Particle Science & Technology:(2019) [In Press].
[117] Tsuda K., Sakka Y., Simultaneous Alignment and Micropatterning of Carbon Nanotubes Using Modulated Magnetic Field. Science and Technology of Advanced Materials, 10(1): 014603 (2009).
[119] Mei L.-Y., Song P., Liu Y.-Q., Magnetic-Field-Assisted Electrospinning Highly Aligned Composite Nanofibers Containing Well-Aligned Multiwalled Carbon Nanotubes. Journal of Applied Polymer Science, 132(22):  (2015).