بررسی اثر کاتالیست بیوچار در فرایند پیرولیز تایر فرسوده برای تولید سوخت

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مهندسی شیمی و نفت، دانشگاه تبریز، تبریز، ایران

چکیده

در این پژوهش پیرولیز لاستیک‏ های فرسوده در مجاورت کاتالیست بیوچار تولیدی از فرایند گازسازی چوب صنوبر بررسی شده است. بدین منظور، در یک راکتور با اندازه‌های آزمایشگاهی، 25 گرم از نمونه بارگذاری شد و پیرولیز نمونه‌ها در دمای C° 500 و در فشار اتمسفریک انجام پذیرفت. نتیجه‌ها نشان داد که کاتالیست بیوچار تأثیر محسوسی بر بازده فراورده‌های به دست آمده از پیرولیز نداشته است ولی مشخصه‌های فراورده‌های تولیدی را تغییر داده است. در مورد فراورده‌های گازی میزان C3H8 را افزایش و میزان C2H6 را کاهش داده است ولی تأثیر محسوسی بر میزان CO، CO2 و H2 نداشته است. کاتالیست بیوچار میزان آروماتیک‏ ها را کاهش و ترکیب‌های خطی را در تار افزایش داده است که نشان از تمایل کاتالیست بیوچار برای فرایند تبدیل آروماتیک ‏ها به ترکیب‌های خطی مانند آلکان‌ها و آلکن‏ ها بوده است. همچنین بیوچار تمایل زیادی برای اکسیژن‏زدایی از تار را داشت. چار تولیدی دارای آروماتیک بیش­تری بوده است. آنالیز DTG نشان دادکه چار به دست آمده از فرایند پیرولیز کاتالیستی شبکه مولکولی سنگین‏ تر و منظم‏ تری داشته است. همچنین آنالیز XRD کاتالیست نشان داد که لایه ای  از مواد کربنی (کک) که به علت فرایند پلیمریزاسیون ترکیب‌های آروماتیکی موجود در بخارهای تولید شده در فرایند پیرولیز است، بر روی کاتالیست نشسته بوده است.

کلیدواژه‌ها

موضوعات


[1] Czajczyńska D., Nannou T., Anguilano L., Krzyżyńska R., Ghazal H., Spencer,N, Jouhara H., Potentials of Pyrolysis Processes in the Waste Management Sector, Energy Procedia, 123: 387-394 (2017). ‏
[2] Hita I., Arabiourrutia M., Olazar M., Bilbao J., Arandes J.M.,  Castaño P., Opportunities and Barriers for Producing High Quality Fuels from the Pyrolysis of Scrap Tires, Renewable and Sustainable Energy Reviews, 56: 745-759 (2016). ‏
[3] Arafat H.A., Jijakli K., Ahsan A., Environmental Performance and Energy Recovery Potential of Five Processes for Municipal Solid Waste Treatment, Journal of Cleaner Production, 105: 233-240 (2015).
[4] Al Arni S., Comparison of Slow and Fast Pyrolysis for Converting Biomass into Fuel, Renewable Energy, 124: 197-201 (2018).
[5] Williams P.T.,  Brindle A.J., Catalytic Pyrolysis of Tyres: Influence of Catalyst Temperature. Fuel, 81(18): 2425-2434 (2002).
[6] Boxiong S., Chunfei W., Binbin G., Rui W., Pyrolysis of Waste Tyres with Zeolite USY and ZSM-5 Catalysts, Applied Catalysis B: Environmental, 73(1-2): 150-157 (2007).‏
[7] Roy C., Chaala A, Vacuum Pyrolysis of Automobile Shredder Residues, Resources, Conservation and Recycling, 32(1): 1-27 (2001).
[8] Olazar M., San José M.J., Alvarez S., Morales A., Bilbao J., Design of Conical Spouted Beds for the Handling of Low-Density Solids, Industrial  Engineering Chemistry Research, 43(2): 655-661 (2004).‏
[9] Shen Y., Yoshikawa K., Tar Conversion and Vapor Upgrading via In Situ Catalysis using Silica-based Nickel Nanoparticles Embedded in Rice Husk Char for Biomass Pyrolysis/Gasification, Industrial  Engineering Chemistry Research, 53(27), 10929-10942 (2014).‏
[10] Zhang X., Wang T., Ma L., Chang J, Vacuum Pyrolysis of Waste Tires with Basic Additives, Waste Management, 28(11), 2301-2310 (2008).
[11] Miandad R., Barakat M. A., Rehan M., Aburiazaiza A.S., Gardy J.,  Nizami A.S, Effect of Advanced Catalysts on Tire Waste Pyrolysis Oil, Process Safety and Environmental Protection, 116: 542-552 (2018). ‏
[12] Shah J., Rasul Jan M., Mabood F., Catalytic Pyrolysis of Waste Tyre Rubber into Hydrocarbons via Base Catalysts, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 27(2): 103-109 (2008).‏
[13] Zhu L., Lei H., Wang L., Catalytic Microwave Pyrolysis of Douglas Fir Pellets with Carbon Catalysts Derived from Corn Stover, Semantic Scholar, 1: 1-8 (2013).
[14] Ren S., Lei H., Wang L., Bu Q., Chen S., Wu J., Hydrocarbon and Hydrogen-Rich Syngas Production by Biomass Catalytic Pyrolysis and Bio-Oil Upgrading over Biochar Catalysts, RSC Advances, 4(21): 10731-10737 (2014)‏.
[15] Gholizadeh M., Gunawan R., Hu X., Kadarwati S., Westerhof R., Chaiwat W., Hasan M.M., Li C.Z., Importance of Hydrogen and Bio-Oil Inlet Temperature During the Hydrotreatment of Bio-Oil, Fuel Processing Technology, 150: 132-40 (2016)
[16] Prabir B., “Biomass Gasification and Pyrolysis”, Elsevier, the Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK. (2010).
[17] Alcock C.B., “Thermochemical Processes”, First ed., University of Norte Dame, Indiana, USA (2000).
[18] Gašparovič L., Koreňová Z., Jelemenský Ľ., Kinetic Study of Wood Chips Decomposition by TGA, Chemical Papers, 64(2): 174-181 (2010).
[19] Scott D.S., Piskorz J., Radlein D., Liquid Products from the Continuous Flash Pyrolysis of Biomass, Industrial  Engineering Chemistry Process Design and Development, 24(3): 581-8 (1985).
[20] Fagbemi L., Khezami L., Capart R., Pyrolysis Products from Different Biomasses: Application to the Thermal Cracking of Tar, Applied Energy, 69(4): 293-306 (2001).
[21] Mohan D., Pittman Jr.C.U., Steele PH; Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review, Energy  Fuels, 20(3): 848-889 (2006).
[22] Onay O., Kockar O.M., Slow, Fast and Flash Pyrolysis of Rapeseed, Renewable Energy, 28(15): 2417-33 (2003).
[23] Iglesias M.J., Jimenez A., Laggoun-Défarge F., Suarez-Ruiz I., FT-IR Study of Pure Vitrains and Associated Coals, Energy  Fuels, 9(3): 458-466 (1995).
[24] Pattiya A, “Fast Pyrolysis, InDirect Thermochemical Liquefaction for Energy Applications”, 1: 3-28. Woodhead Publishing (2018).
[25] Data Excerpted from Bridgwater. Compiled from Data in Demirbas, (2001).
[26] Brown R.C., Wang K., “Fast Pyrolysis of Biomass: Advances in Science and Technology”, Royal Society of Chemistry; (2017).
[27] Liang C., Wang Y., Jiang S., Zhang Q., Li X., The Comprehensive Study on Hydrocarbon Fuel Pyrolysis and Heat Transfer Characteristics, Applied Thermal Engineering, 117: 652-658 (2017).
[28] Kan T., Strezov V.,  Evans, Fuel Production from Pyrolysis of Natural and Synthetic Rubbers, Fuel, 191: 403-410 (2017).
[29] Krull E.S., Baldock J, Skjemstad J.O., Smernik R.S., “Characteristic of Biochar: Organo-Chemical Properties, Biochar for Environment Science and Technology”, Earthsan Publication Ltd, 4: 53-66 (2009).
[30] Liu Z., Zhang F., Yan S., Tian L., Wang H., Liu H., Wang H., Hu J., Effects of Temperature and Low-Concentration Oxygen on Pine Wood Sawdust Briquettes Pyrolysis: Gas Yields and Biochar Briquettes Physical Properties, Fuel Processing Technology, 177: 228-236 (2018).
[31] Staurt B., “Infrared Spectroscopy: Fundamentals and Applications”, John Wiley and Sons, Ltd., West Sussex, England, (2004).
[32] Gholizadeh M., Zhang Sh., Hu X., Zhang Ch., Liu Q., Salavati S., Cross-Interaction During Co-Gasification of Wood, Weed, Plastic, Tire and Carton, Environmental Management, 250: 109467 (2019).