بررسی انرژی سطحی، پایداری و ویژگی‌های ساختاری نانوخوشه‌های Au-Ag تشکیل شده در فرایند تراکم بخار با استفاده از شبیه‌سازی دینامیک مولکولی

نوع مقاله : علمی-پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

در این پژوهش، مسیر رشد نانوخوشه‌ها، پایداری، انرژی سطحی، میزان کروی بودن و ساختار نانوخوشه‌های دوفلزی طلا-نقره که در فرایند تراکم بخار تشکیل شده‌اند با استفاده از شبیه سازی دینامیک مولکولی بررسی شد. بررسی‌ها نشان دادند که اتم‌های طلا درون هسته نانوخوشه قرار می‌گیرند. همچنین نتیجه‌ها نشان دادند که تعدادی نانوخوشه‌های منظم با ساختارهایی شبیه fcc  و hcp  در این فرایند تشکیل شده است. فرایند گرمایش نانوخوشه‌ها نشان داد که نانوخوشه‌ها با افزایش دما بیش­تر کروی می‌شوند که این موجب پایداری بیش­تر ساختار نانوخوشه‌ها می‌شود.

کلیدواژه‌ها

موضوعات


[1] Goudeli E., Pratsinis S.E., Crystallinity Dynamics of Gold Nanoparticles during Sintering or Coalescence, AIChE J, 62: 589–598 (2016).
[2] اسلامی مقدم م.، منصوری ترشیزی ح.، سعیدی فر م.، بررسی برهمکنش کمپلکس‌های ضدتومور پالادیوم و پلاتین دارای اتیل دی تیوکربامات با سرم آلبومین انسانی، نشریه شیمی و مهندسی شیمی ایران، (4)37: 155 تا 166 ( 1397).
[3] Garcia S., Anderson R.M., Celio H., Dahal N., Dolocan A., Zhoub J., Humphrey S.M., Microwave Synthesis of Au–Rh Core–Shell Nanoparticles and Implications of the Shell Thickness in Hydrogenation Catalysis, Chem. Commun, 49: 4241-4243 (2016).
[4] قنبر لو ح.، روشن ضمیر س.، پرنیان م.ج.، مقایسه فعالیت کاتالیست‌های دو فلزی  Co/NG-Fe-Co/MWCNT  Fe- برای واکنش احیای اکسیژن در کاتد پیل‌های سوختی، نشریه شیمی و مندسی شیمی ایران، (2)36: 151 تا 162 (1396).
[5] افضلی د.، فتحی راد ف.، بررسی عملکرد نانوکاتالیست‌های دوفلزی برای بهبود فرایند اکسایش اتیلن گلیکول و گلیسرول در پیل سوختی ، نشریه شیمی و مهندسی شیمی ایران، (3)39: 93 تا 109 (1399).
[6] خردمندی نیا ش.، خندان ن.، ایکانی م.ح.، سنتز کاتالیست‌های دوفلزی قلع-کبالت و بررسی مقاومت آن‌ها در برابر آلودگی مونوکسید کربن، به منظور استفاده در لایه آندی پیل سوختی PEM، نشریه شیمی و مهندسی شیمی ایران (1)37: 91 تا 103 ( 1397).
[7] Kim D.-J., Kim K.-S., Analysis on Nanoparticle Growth by Coagulation in Silane Plasma Reactor, AIChE J, 48: 2499–2509 (2002). 
[8] Zhu C., Yu Q., Dave R.N., Pfeffer R., Gas Fluidization Characteristics of Nanoparticle Agglomerates, AIChE J, 51: 426–439 (2005).
[9] Jang H., Ryoo S.R., Kostarelos K., Han S.W., Min D.H., The Effective Nuclear Delivery of Doxorubicin from Dextran-Coated Gold Nanoparticles larger Than Nuclear Pores, Biomaterials, 34: 3503-3510 (2013).
[10] Kang S.W., Lee Y.W., Park Y., Choi B., Hong J.W., Park K., Han S.W., One-Pot Synthesis of Trimetallic Au@PdPt Core-Shell Nanoparticles with High Catalytic Performance, ACS Nano, 7: 7945–7955 (2013).
[11] Kiran V., Ravikumar T., Kalyanasundaram N.T., Krishnamurty S., Shukla A.K; Sampatha S., Electro-Oxidation of Borohydride on Rhodium, Iridium, and Rhodium–Iridium Bimetallic Nanoparticles with Implications to Direct Borohydride Fuel Cells, J. Electrochem. Soc, 157: 1201-1208 (2010).
[12] Akbarzadeh H., Abbaspour M., Mehrjouei E., Masoumi A., Structural Evolution of Pt/Pd Nanoparticles in Condensation Process, J. Mol. Liq, 248: 822-829 ( 2017).
[13] Yen C.W., Lin M.L., Wang A., Chen S.A., Chen J.M., Mou C.Y., CO Oxidation Catalyzed by Au− Ag Bimetallic Nanoparticles Supported in Mesoporous Silica, J. Phys. Chem. C, 113: 17831 (2009).
[14] Tokonami, S., Morita, N., Takasaki, K., Toshima N., Novel Synthesis, Structure, and Oxidation Catalysis of Ag/Au Bimetallic Nanoparticles, J. Phys. Chem. C, 114: 10336 (2010).
[15] Granqvist C. G., Buhrman R. A., Ultrafine Metal Particles. J. Appl. Phys, 70: 2200 (1976).
[16] Akbarzadeh H., Abbaspour M., Masoumi A., Mehrjouei E., Dynamical Investigation of Formation of NiPt Nanoclusters in Gas Phase, J. Mol. Liq, 240: 221-224 (2017).
[17] Haberland H., Moseler M., Qiang Y., Rattunde O., Reiners T., Thurner Y., Energetic Cluster Impact ECI: A New Method for Thin-Film Formation, Surf. Rev. Lett, 3: 887(1996).
[18] Kesälä E., Kuronen A., Nordlund K., Molecular Dynamics Simulation of Pressure Dependence of Cluster Growth in Inert Gas Condensation, Phys. Rev. B, 75: 174121(2007).
[19] Seipenbusch M., Toneva P., Peukert W., Weber A.P., Impact Fragmentation of Metal Nanoparticle Agglomerates, Part. Part. Syst. Charact, 24: 193–200 (2007).
[20] Starsich F.H.L., Hirt A.M., Stark W.J., Grass R.N., Gas-Phase Synthesis of Magnetic Metal/Polymer Nanocomposites, Nanotechnology, 25: 505602 (2014).
[21] Zhao J., Singh V., Grammatikopoulos P., Cassidy C., Aranishi K., Sowwan M., Nordlund K., Djurabekova F., Crystallization of Silicon Nanoclusters with Inert Gas Temperature Control, Phys. Rev. B, 91: 035419(2015).
[22] Wells D.M., Rossi G., Ferrando R., Palmer R.E., Metastability of the Atomic Structures of Size-Selected Gold Nanoparticles, Nanoscale, 7: 6498-6503(2015).
[23] Chepkasov I.V., Gafner Y.Y., Gafner S.L., Changing of the Shape and Structure of Cu Nanoclusters Generated from a Gas Phase: MD Simulations, J. Aerosol Sci, 91: 33–42 (2016).
[24] Huang  J., Liu C., Sun D., Hong Y., Du M., Odoom-Wubah T., Fang W., Li Q.,  Biosynthesized Gold Nanoparticles Supported over TS-1 Toward Efficient Catalyst for Epoxidation of Styrene, Chem. Eng. J, 235: 215-223 (2014).
[25] Burnett D.J., Garcia A.R., J. Nanotechnol. Online, 388: 88 (2010).
[26] Ip S.W., Toguri J.M. The Equivalency of Surface Tension, Surface Energy and Surface Free Energy, J. Mater. Sci, 29: 688 (1994).
[27] Kendall K., Alford N.M., Birchall J.D., A New Method for Measuring the Surface Energy of Solids, Nature, 325: 794–796 (1987).
[28] Akbarzadeh H., Taherkhani F., Cluster Size Dependence of Surface Energy of Ni Nanoclusters: A Molecular Dynamics Study, Chem. Phys. Lett, 558: 57–61 (2013).
[30] Granqvist C.G., Buhrman R.A., Ultrafine Metal ParticlesJournal of Applied Physics, 47: 2200-2219 (1976).
[31] Suryanarayana C., Prabhu B., Koch C.C., "Nanostructure Materials", 47-90, William Andrew Inc, (2007).
[32] Westergren J., Grönbeck H., Kim S.G., Tománek D., Noble Gas Temperature Control of Metal Clusters: A Molecular Dynamics StudyThe Journal of Chemical Physics107: 3071-3079 (1997).
[33] Qi Y., Çağin, T., Kimura Y., Goddard III W.A., Viscosities of Liquid Metal Alloys from Nonequilibrium Molecular Dynamics, J. Comput. Aided Mater. Des, 8: 233–243 (2001).
[34] Todorov I.T., Smith W., Trachenko K., Dove M.T., DL_POLY_3: New Dimensions in Molecular Dynamics Simulations via Massive Parallelism, J. Mater. Chem., 16: 1611 (2006).
[35] Zhao J., Singh V., Grammatikopoulos P., Cassidy C., Aranishi K., Sowwan M., Nordlund K., Djurabekova F., Crystallization of Silicon Nanoclusters with Inert Gas Temperature Control, Phys. Rev. B., 91: 035419 (2015).
[36] Akbarzadeh H., Shamkhali A.N., Mehrjouei E., Ag–Au Bimetallic Nanoclusters Formed from a Homogeneous Gas Phase: A New Thermodynamic Expression Confirmed by Molecular Dynamics Simulation, Phys. Chem. Chem. Phys, 19: 3763-3769 (2017).
[37] Meyer R., Gafner J.J., Gafner, S.L.,  Stappert S., Rellinghaus B.,  Entel P., Computer Simulations of the Condensation of Nanoparticles from the Gas Phase, Phase Trans., 78: 35-46 (2005).
[38] Krasnochtchekov P., Averback R.S., Krasnochtchekov P., Averback R.S., Molecular Dynamics Simulations of Cluster Nucleation During Inert Gas Condensation, J. Chem. Phys., 122: 044319 (2005).
[39] Harjunmaa A., Nordlund K., Molecular Dynamics Simulations of Si/Ge Cluster Condensation, Comput. Mater. Sci., 47: 456–459 (2009).
[40] Abbaspour M., Akbarzadeh H., Salemi S., Lotfi, S.,  Investigation of Possible Formation of Au@ M (M= Cu, Ir, Pt, and Rh) Core–Shell Nanoclusters in a Condensation–Coalescence Process Using Molecular Dynamics Simulations, Industrial & Engineering Chemistry Research, 57: 14837-14845 (2018).
[41] Abbaspour M., Akbarzadeh H., Lotfi S., Icosahedral Ir, Rh, Pt, and Cu Nanoclusters into Gold Vapor Environment: Thermodynamic and Structural Analysis of the Formed Core@Shell Nanoclusters Using MD Simulations, Journal of Alloys and Compounds, 764: 323-332 (2018).
[42] Cagin Y. K. T., Qi Y., Ikeda H., Johnson W. L., Goddard III W. A., Calculation of Mechanical, Thermodynamic and Transport Properties of Metallic Glass Formers, Mater. Res. Soc. Symp. Proc., 554: 43–44 (1999).
[43] Avoodi J., Mehri L. Molecular Dynamics Simulation of Solidification of Ag-x% Au NanoalloyDefect and Diffusion Forum312: 143-148 (2011).
[44] Haberland H., Moseler M., Qiang Y., Rattunde O., Reiners T., Thurner Y., Energetic Cluster Impact ECI: A New Method for Thin-Film Formation, Surf. Rev. Lett., 3: 887 (1996).
[45] Neek-Amal M., Asgari R., Rahimi Tabar M.R., The Formation of Atomic Nanoclusters on Graphene Sheets, Nanotechnology, 20: 135602–135608 (2009).
[47] Lehtinen K.E., Windeler R.S., Friedlander S.K., A Note on the Growth of Primary Particles in Agglomerate Structures by Coalescence, Journal of Colloid and Interface Sscience, 182: 606-608 (1996).
[48] Abbaspour M., Akbarzadeh H., Valizadeh Z., Au–Ir Nanoalloy Nucleation During the Gas-Phase Condensation: A Comprehensive MD Study Including Different Effects, Inorganic Chemistry Frontiers, 5: 1445-1457 (2018).
[49] Abbaspour M., Valizadeh Z., Jorabchi M.N., Nucleation, Coalescence, Thermal Evolution, and Statistical Probability of Formation of Au/Ir/Pd Nanoalloys in Gas-Phase Condensation Process, Journal of Molecular Liquids, 274: 434-446 (2019).
[50] Rossi G., Rapallo A., Mottet C., Fortunelli A., Baletto F., Ferrando, R., Magic Polyicosahedral Core-Shell Clusters, Phys. Rev. Lett., 93: 105503 (2004).
[51] Li M., Cheng D., Molecular Dynamics Simulation of the Melting Behavior of Crown-Jewel Structured Au–Pd Nanoalloys, J. Phys. Chem. C, 11718746–18751 (2013).
[52] Kittel C., "Introduction to Solid State Physics", 8th ed., Hoboken, NJ: John Wiley & Sons, Inc, (2005).
[53] Stukowski, “ Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool”, Modell. Simul. Mater. Sci. Eng., 18(1): 015012 (2010).
[54] Vitos L., Ruban A.V., Skriver H.L., Kollar, J. The Surface Energy of Metals, Surf. Sci, 411: 186–202 (1998).
[55] Harjunmaa A., Nordlund K., Molecular Dynamics Simulations of Si/Ge Cluster Condensation, Comput. Mater. Sci, 47: 456–459 (2009).
[56] Pearmain D., Park S.J., Abdela A., Palmer R.E., Li Z.Y., The Size-Dependent Morphology of Pd Nanoclusters Formed by Gas Condensation, Nanoscale, 7: 19647-19652 (2015).
[57] Steinhardt P.J., Nelson D.R., Ronchetti M., Bond-Orientational order in Liquids and Glasses, Phys. Rev. B, 28: 784-805 (1983).
[58] Sankaranarayanan S.K., Bhethanabotla V.R., Joseph B., Molecular Dynamics Simulation Study of the Melting of Pd-Pt Nanoclusters, Phys. Rev. B, 71: 195415 (2005).
[59] Martinez-Carreón M., Solis-Pomar F., Fundora-Cruz A., Gutiérrez C., Hernández-Pinero J., Mejia-Rosales S., Pérez-Tijerina E., Synthesis and Structural Analysis of Gold-Palladium Alloy Nanoparticles using Co-Sputtering of Independent Sources, Materials Research Express, 6(4): 046515 (2018).
[60] Qi W.H., Lee S.T., Phase Stability, Melting, and alloy Formation of Au− Ag Bimetallic NanoparticlesThe Journal of Physical Chemistry C114: 9580-9587 (2010).
[61] Borysiuk V., Lyashenko I., “Atomistic Simulation of the Melting Behavior of the Au-Ag Nanoparticles with Core-Shell Structure”, IEEE 35th International Conference on Electronics and Nanotechnology (ELNANO) IEEE, Kyiv, Ukraine, 155-157 (2015).                                            
[62] Jabbareh, M.A., Size, Shape and Temperature Dependent Surface Energy of Binary Alloy Nanoparticles, Applied Surface Science426: 1094-1099 (2017).
[63] Magnusson M.H., Deppert K., Malm J.O., Bovin J.O., Samuelson L., Gold Nanoparticles: Production, Reshaping, and Thermal ChargingJournal of Nanoparticle Research, 1: 243-251 (1999).