سنتز الکتروشیمیایی و بررسی ویژگی های مغناطیسی نانوکامپوزیت آهن اکسید دوپه شده با Mn2+/ گرافن اکسید کاهیده

نوع مقاله : علمی-پژوهشی

نویسندگان

پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، تهران، ایران

چکیده

در این مقاله، نانوکامپوزیت آهن اکسید نانو ذره دوپه شده با Mn2+ / گرافن اکسید کاهیده (Mn-IONs@RGO) برای اولین بار از طریق یک فرآیند سنتز الکتروشیمیایی ساخته شد. فرآیند سنتز الکتروشیمیایی برپایه رشد الکتروشیمیایی نانوذره­های آهن اکسید بر روی ورقه­های گرافن اکسید کاهیده روی الکترود کاتد رسوب داده شده، می­باشد. الگوهای پراش پرتو ایکس (XRD) نانوکامپوزیت سنتز شده ساختار بلوری مگنتیت را نشان می­ دهد. در ساختار نانوکامپوزیت سنتز شده، ریخت ­شناسی نانوذره­ای آهن اکسید و دوپ شدن کاتیون­ های Mn2+ دوپه شده در ساختار کریستالی آن‌ها و حضور ورقه ­های گرافن اکساید کاهیده از طریق مشاهدات میکروسکوپ الکترونی روبشی گسیل میدانی (FE-SEM) و آنالیزهای طیف سنجی پراش انرژی پرتوایکس (EDS) و اسپکتروسکوپی مادون قرمز تبدیل فوریه (FT-IR) تایید شدند. نمونه­ ی Mn-IONs مرکب از ذره­ های کروی با اندازه­ای دانه بین 20-25 نانومتر با ترکیب عنصری 36/71 درصد وزنی آهن، 71/7 درصد منگنز و 93/20 درصد اکسیژن مشخص گردید. هم­چنین، نمونه ­ی Mn-IONs@RGO ترکیب عنصری متشکل از 15/59 درصد وزنی آهن، 42/8 درصد وزنی منگنز، 67/23 درصد اکسیژن و 76/8 درصد وزنی کربن بود. حضور منگنز  و کرین در ترکیب عنصری نمونه­ی Mn-IONs@RGO به ترتیب موید دوپه شدن IONs با کاتیون­های منگنز و تشکیل نانوذره­های Mn-IONs روی لایه های RGO از طریق فرایند سنتز الکتروشیمیایی است. ماهیت سوپرپارامغناطیس نانوکامپوزیت سنتز شده از طریق آنالیز مغناطیس سنجی نمونه مرتعش (VSM) و منحنی M-H تعیین شد. نانوکامپوزیت تهیه شده ویژگی­ های مغناطیسی برابر با emu.g-1 86/31 = Ms، emu.g-1 07/0 = Mr و G 29/2 = Hci را نشان داد.  

کلیدواژه‌ها

موضوعات


[1] Talaat A., Suraj M.V., Byerly K., Wang A., Wang Y., Lee J.K., Ohodnicki P.R., Review on Soft Magnetic Metal and Inorganic Oxide Nanocomposites for Power Applications, J. Alloys Compd., 870: 159500 (2021).
[2] Marelign Beyene A., Moniruzzaman M., Karthikeyan A., Min T., Curcumin Nanoformulations with Metal Oxide Nanomaterials for Biomedical Applications, Nanomater., 11(2): 460: (2021).
[3] Anwar H., Abbas B., Mustafa A., Anjum F., Ahmad F., Naz I. Investigation of Doping Effect on Structural, Optical, Antibacterial, and Toxicity Properties of Iron Doped Copper Oxide Nanostructures Prepared by Co-Precipitation Route, Iran. Chem. Chem. Eng. (IJCCE), 41(3): 777-786 (2022).
[4] Anik M.I., Khalid Hossain M., Hossain I., Mahfuz A.M.U.B., Tayebur Rahman M., Ahmed I., Recent Progress of Magnetic Nanoparticles in Biomedical Applications: A Review, Nano Select, 2(6): 1146-1186 (2021).
[5] Materón E.M., Miyazaki C.M., NiravJoshi O.C., Picciani P.H.S., Dalmaschio C.J., Davis F., Shimizu F.M., Magnetic Nanoparticles in Biomedical Applications: A Review, Appl. Surf. Sci. Adv., 6: 100163 (2021).
[6] Akhtar K., Shah A., Zubair N., Javed K., Chemical Dynamics of Monodispersed Iron Oxide Nanoparticles, Iran. Chem. Chem. Eng. (IJCCE), 38(5): pp. 21-30 (2019).
[7] Lamichhane N., Sharma S., Anita P., Verma K., Roy I., Sen T., Iron Oxide-Based Magneto-Optical Nanocomposites for in Vivo Biomedical Applications, Biomed., 9(3): 288 (2021).
[8] Anwar, H., Amin, A., Iqbal, M., Haseeb, M., Hanif, S., Khalid, M., Sajid, H., Abbas, B., Hassan, M., Dissanayake, M., Investigation of Evolution in Synthesis of Graphene Oxide and Reduced Graphene Oxide for Maximum Yield, Iran. Chem. Chem. Eng. (IJCCE). doi: 10.30492/ijcce.2022.537090.4889.
[9] Patil T.V., Patel D.K., Dutta S.D., Ganguly K., Lim K.-T., Graphene Oxide-Based Stimuli-Responsive Platforms for Biomedical Applications, Molecules, 26(9): 2797 (2021).
[10] Magne T.M., de Oliveira Vieira T., Rebelo Alencar L.M., Maia Junior F.F., Gemini-Piperni S., Carneiro S.V., Fechine L.M.U. D., Freire R.M., Santos-Oliveira R., Graphene and Its Derivatives: Understanding the Main Chemical and Medicinal Chemistry Roles for Biomedical Applications, J. Nanostructure Chem., (2021) https://doi.org/10.1007/s40097-021-00444-3
[11] Kohzadi S., Najmoddin N., Baharifar H., Shaban M., Functionalized SPION Immobilized on Graphene-Oxide: Anticancer and Antiviral Study, Diamond Related Mater., 127: 109149 (2022).
[12] Karimi S., Namazi H., Fe3O4@PEG-Coated Dendrimer Modified Graphene Oxide Nanocomposite as a pH-Sensitive Drug Carrier for Targeted Delivery of Doxorubicin, J. Alloys Compd., 879: 160426 (2021).
[13] Lee X.J., Lim H.N., Gowthaman N.S.K., AbdulRahman M.B., Che Abdullah C.A., Muthoosamy K., In-Situ Surface Functionalization of Superparamagnetic Reduced Graphene Oxide –Fe3O4 Nanocomposite Via Ganoderma Lucidum Extract for Targeted Cancer Therapy Application, Appl. Surf. Sci., 512: 145738 (2020).
[14] Zan P., Yang C., Sun H., Zhao L., Lv Z., He Y., One-Pot Fabricating Fe3O4/Graphene Nanocomposite with Excellent Biocompatibility and Non-Toxicity as a Negative MR Contrast Agent, Colloids Surf. B, 145: 208-216 (2016).
[15] Karthika V., AlSalhi M.S., Devanesan S., Gopinath K., Arumugam A., Govindarajan M., Chitosan Overlaid Fe3O4/rGO Nanocomposite for Targeted Drug Delivery, Imaging, and Biomedical Applications, Sci. Rep., 10: 18912 (2020).
[16] Taheri-Kafrani A., Shirzadfar H., Abbasi Kajani A., Kudhair B.K., Mohammed L. J., Mohammadi S., Lotfi F., Functionalized Graphene Oxide/Fe3O4 Nanocomposite: A Biocompatible and Robust Nanocarrier for Targeted Delivery and Release of Anticancer Agents, J. Biotechnol., 331: 26-3610 (2021).
[17] Fang W., Zhu W., Chen H., Zhang H., Hong S., Wei W., Zhao T., MRI Enhancement and Tumor Targeted Drug Delivery Using Zn2+-Doped Fe3O4 Core/Mesoporous Silica Shell Nanocomposites, ACS Appl. Bio. Mater., 3(3): 1690-1697 (2020).
[18] Luo Y., Zhang W., Liao Z., Yang S., S. Yang, Li X., Zuo F., Luo J., Role of Mn2+ Doping in the Preparation of Core-Shell Structured Fe3O4@Upconversion Nanoparticles and Their Applications in T1/T2-Weighted Magnetic Resonance Imaging, Upconversion Luminescent Imaging and Near-Infrared Activated Photodynamic Therapy, Nanomater., 8(7): 466 (2018).
[19] Samrot A.V., SaiSahithya C., Selvarani J., Purayil S.K., Ponnaiah P., A Review on Synthesis, Characterization and Potential Biological Applications of Superparamagnetic Iron Oxide Nanoparticles, Curr. Res. Green Sustainable Chem., 4: 100042 (2021).
[20] Cotin G., Piant S., Mertz D., Felder-Flesch D., Begin-Colin S., Iron Oxide Nanoparticles for Biomedical Applications, Synthesis, Functionalization and Application, Metal Oxides, 2: 43-88 (2018).
[21] Nguyen M., Tran H.-V., Xu S., Randall Lee T., Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications, Appl. Sci., 11(23): 11301 (2021).
[22] Li G.R., Xu H., Lu X.F., Feng J.X., Tong Y.X., Su C. Y., Electrochemical Synthesis of Nanostructured Materials for Electrochemical Energy Conversion and Storage, Nanoscale, 5: 4056-4069 (2013).
 [23] Schotten C., Nicholls T. P., Bourne R.A., Kapur N., Nguyen N.B, Willans C. E., Making Electrochemistry Easily Accessible to the Synthetic Chemist, Green Chem., 22: 3358-3375 (2020).
[24] Aghazadeh M., Karimzadeh I., Ganjali M.R., Behzad A., Mn2+-Doped Fe3O4 Nanoparticles: A Novel Preparation Method, Structural, Magnetic and Electrochemical Characterizations, J. Mater. Sci. Mater. Elec., 28(23): 18121–18129 (2019).
[25] Aghazadeh M., One-Step Cathodic Electrosynthesis of Surface Capped Fe3O4 Ultra-Fine Nanoparticles from Ethanol Medium Without Using Coating Agent, Mater. Lett., 211: 225-229 (2018).
[26] Aghazadeh M., Ganjali M.R., Samarium-Doped Fe3O4 Nanoparticles with Improved Magnetic and Supercapacitive Performance: A Novel Preparation Strategy and Characterization, J. Mater. Sci., 53(1): 295-308 (2018).
[27] Karimzadeh I., Rezagholipour Dizaji H., Aghazadeh M., Preparation, Characterization and PEGylation of Superparamagnetic Fe3O4 Nanoparticles from Ethanol Medium Via Cathodic Electrochemical Deposition (CED) Method, Mater. Res. Express, 3(9): 095022 (2016).
[28] Ma Y., Han J., Wang M., Chen X., Jia S., Electrophoretic Deposition of Graphene-Based MATERIALS: A REVIEW of Materials and Their Applications, J. Materiomics, 4: 108-120 (2018).
[29] Quezada-Rentería J.A., Cházaro-Ruiz L.F., Rangel-Mendez J.R., Synthesis of Reduced Graphene Oxide (rGO) Films Onto Carbon Steel by Cathodic Electrophoretic Deposition: Anticorrosive Coating, Carbon, 22: 266-275 (2017).
 [30] Asfaram A., Ghaedi M., Hajati S., Goudarzi A., Alipanahpour Dil E., Screening and Optimization of Highly Effective Ultrasound-Assisted Simultaneous Adsorption of Cationic Dyes Onto Mn-Doped Fe3O4-Nanoparticle-Loaded Activated Carbon, Ultrason. Sonochem., 34: 1-12 (2017).
[31] Jiao Y., Zhang H., Dong T., Shen P., Cai Y., Zhang H., Zhang S., Improved Electrochemical Performance in Nanoengineered Pomegranate-Shaped Fe3O4/RGO Nanohybrids Anode Material, J. Mater. Sci., 52: 3233–3243 (2017).
[33] Li Y., Zhao C., Wen Y., Wang Y., Yang Y., Adsorption Performance and Mechanism of Magnetic Reduced Graphene Oxide in Glyphosate Contaminated Water, Environ. Sci. Pollut. Res., 25: 21036–21048. (2020).
[34] Yang X., Chen W., Huang J., Zhou Y., Zhu Y., Li C., Rapid Degradation of Methylene Blue in a Novel Heterogeneous Fe3O4 @rGO@TiO2-CATALYZED PHOTO-FENTON System, Sci. Rep., 5: 10632-10649 (2015).