تولید سوخت زیستی مایع از ریز جلبک نانو کلروپسیس در فرایند مایع سازی هیدروترمال با استفاده از کاتالیست‌‌ های پایه کربنی

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده شیمی، پردیس علوم، دانشگاه تهران، تهران، ایران

چکیده

در مطالعه حاضر به منظور دستیابی به درصد تبدیل بالای زیست ­توده و بیش‌ترین تولید سوخت­ زیستی مایع، شرایط عملیاتی فرایند مایع­ سازی­ ­هیدروترمال ریزجلبک نانوکلروپسیس مانند دما (270-310-350 درجه سلسیوس)، زمان ماند (60-40-20 دقیقه) و درصد زیست‌توده (15-10-5 درصد وزنی) به درستی بررسی شدند. پس از آن، سه کاتالیست‌‌ پایه کربنی (Co/AC, Zn/AC, Co-Zn/AC) گوناگون که پایه کربن آن‌ها از هیدروچار فرایند ذکر شده به دست آمد، مورد آزمایش قرار گرفتند. آزمون­ های کاتالیستی در همان شرایط عملیاتی بهینه شده فرایند مایع ­سازی هیدروترمال اجرا شدند. از بررسی نتیجه‌های به‌دست آمده از آنالیزهای CHNS و GC-MS ثابت شد که حضور هر سه کاتالیست‌‌ بر روی کیفیت و کمیت سوخت‌زیستی مایع به دست آمده مؤثر است؛ حال آن که به علت اثر هم افزایی دو فلز روی و کبالت در کاتالیست‌‌ دو­فلزی، درصد هیدروکربن تولیدی که مهم‌ترین جز سوخت زیستی مایع تولیدی است افزایش چشم­گیری نشان داده است. این کاتالیست‌‌ همچنین بالا­ترین بازده تولید سوخت­ زیستی مایع (12/40 درصد) و در کنار آن درصد پایین‌تری از گاز و جامد کربنی را تولید کرده است.

کلیدواژه‌ها

موضوعات


[1] Wang W., Xu Y., Wang X., Zhang B., Tian W., Zhang J., Bioresource Technology Hydrothermal Liquefaction of Microalgae Over Transition Metal Supported TiO2 Catalyst, Bioresour. Technol., 250: 474–480 (2018).
[2] کریمی ع.، توسلی ا.، جعفریان س.، گازی‌سازی نانوکاتالیستی زیست‌توده باگاس به گاز غنی از هیدروژن با ریفرمینگ با بخار آب، نشریه شیمی و مهندسی شیمی ایران، (39)98: 249 تا 260 (1399).
[3] شامی ط.، بهشتی ب.، زنوزی ع.، الماسی م.، تولید بایودیزل از زیست توده ریزجلبک بومی ایران، نشریه شیمی و مهندسی شیمی ایران، (40)101: 373 تا 386 (1400).
[4] Galadima A., Muraza O., Hydrothermal Liquefaction of Algae and Bio-Oil Upgrading into Liquid Fuels: Role of Heterogeneous Catalysts, Renew. Sustain. Energy Rev., 81: 1037–1048 (2018).
[5] Ross A.B., Biller P., Kubacki M.L., Li H., Jones J.M., Hydrothermal Processing of Microalgae Using Alkali and Organic Acids, Fuel, 89(9):  2234–2243 (2010).
[6] Chen Y., Rentao M., Mingde Y., Lina F., Yulong W., Kejing W., Ya L., Jinlong G., Catalytic Hydrothermal Liquefaction for Bio-Oil Production over CNTs Supported Metal Catalysts, Chem. Eng. Sci., 161: 299–307 (2017).
[7] Koley S., Khadase M.S., Mathimani T., Raheman H., Mallick N., Catalytic and non-Catalytic Hydrothermal Processing of Scenedesmus Obliquus Biomass for Bio-Crude Production – A Sustainable Energy Perspective, Energy Convers. Manag., 163: 111–121 (2018).
[8] Environ E., Duan P., Savage P.E., Catalytic Treatment of Crude Algal Bio-Oil in Supercritical Water : Optimization Studies, Energy & Environmental Science, 4: 1447–1456 (2011).
[9] Biller P., Sharma B.K., Kunwar B., Ross A.B., Hydroprocessing of Bio-Crude from Continuous Hydrothermal Liquefaction of Microalgae, Fuel, 159: 197–205 (2015).
[10] Bai X., Duan P., Xu Y., Zhang A., Savage P.E., Hydrothermal Catalytic Processing of Pretreated Algal oil : A Catalyst Screening Study, FUEL, 120: 141–149 (2014).
[11] Cheng S., Quitain A.T., Yusup S., Sasaki M., Uemura Y., Kida T., The Journal of Supercritical Fluids Metal Oxide-Catalyzed Hydrothermal Liquefaction of Malaysian Oil Palm Biomass to Bio-Oil under Supercritical Condition, J. Supercrit. Fluids, 120: 384–394 (2017).
[14] Achouri I.E., Abatzoglou N., Fauteux-Lefebvre C., Braidy N., Diesel Steam Reforming: Comparison of Two Nickel Aluminate Catalysts Prepared by Wet-Impregnation and co-Precipitation, Catal. Today, 207: 13–20 (2013).
[15] Biller P., Riley R., Ross A.B., Catalytic Hydrothermal Processing of Microalgae: Decomposition and Upgrading of Lipids, Bioresour. Technol., 102(7): 4841–4848 (2011).
[16] Xu Y., Wang Z., Tan L., Yan H., Zhao Y., Duan H., Song Y-F., Interface Engineering of High-Energy Faceted Co3O4/ZnO Heterostructured Catalysts Derived from Layered Double Hydroxide Nanosheets, Ind. Eng. Chem. Res., 57: 5259−52670 (2018).
[17] Cai H., Zhang D., Ma X., Ma Z., A Novel ZnO/Biochar Composite Catalysts for Visible Light Degradation of Metronidazole, Separation and Purification Technology, 288: 120633 (2022).
[18] Gollakotaa A.R.K., Kishoreb N., Gu S., A Review on Hydrothermal Liquefaction of Biomass, Renewable and Sustainable Energy Reviews, 81: 1378-1392 (2017).
[19] Xue Y., Chen H., Zhao W., Yang C., Ma P., Han S., A Review on the Operating Conditions of Producing Bio-Oil from Hydrothermal Liquefaction of Biomass, International Journal of Energy Research, 40(7): 865-877 (2015).
[20] Tekin K., Karagöz S., Non-Catalytic and Catalytic Hydrothermal Liquefaction of Biomass, Res. Chem. Intermed., 39: 485–498 (2013).
[21] Akhtar J., Amin N.A.S., A Review on Process Conditions for Optimum Bio-Oil Yield in      Hydrothermal Liquefaction of Biomass, Renewable and Sustainable Energy Reviews, 15(3): 1615-1624 (2011).