مطالعه الکتروشیمیایی فرایندهای انتقال بار و جرم در نانوپوسته های کبالت اکسید

نوع مقاله : علمی-پژوهشی

نویسندگان

1 فارس، دانشگاه آزاد اسلامی واحد علوم و تحقیقات فارس، گروه شیمی

2 تهران، دانشگاه خواجه نصیرالدین طوسی، گروه شیمی

چکیده

در این مقاله یک روش ساده و مؤثر برای ساخت نانوپوسته‌ های کبالت اکسید (II) ارایه می‌شود. مورفولوژی و ساختار شیمیایی نانوپوسته‌ ها با روش‌های گوناگون شامل میکروسکپ ‌های الکترونی (روبشی و عبوری)، پراش اشعه ایکس، میکروسکپی روبشی تونلی و روش‌های الکتروشیمیایی بررسی شد. مطالعه جامعی بر رفتار الکتروشیمیایی نانوپوسته‌ ها در فصل مشترک با الکترولیت، فرایندهای انتقال بار و جرم (انتشار غیر خطی یون مقابل) در آنها و سینتیک و مکانیسم واکنش‌ها با استفاده از ولتامتری چرخه ای و اسپکتروسکپی امپدانس الکتروشیمیایی انجام شد.ثابت‌های سرعت واکنش‌های الکتروشیمیایی، و ضریب انتشار یون مقابل در نانوپوسته‌ها در پتانسیل‌های گوناگون گزارش شد.  

کلیدواژه‌ها

موضوعات


[1] Tvarusko A., Investigation of Manganese Dioxides, J. Electrochem. Soc., 111, 125 (1964).
[2] Lund H., Hammerich O. (Eds.), “Organic Electrochemistry”, Marcel Dekker, New York, (2001).
[3] Beer H. B., The Invention and Industrial Development of Metal Anodes, J. Electrochem. Soc., 127, p. 303C (1980).
[4] Daghetti A., Lodi G., Trasatti S., Interfacial Properties of Oxides Used as Anodes in the Electrochemical Technology, Mater. Chem. Phys., 8, p.1 (1983).
[5] Smith P.B., Bernasek S.L., The Adsorption of Water on TiO2 (001), Surf. Sci., 188, p. 241 (1987).
[6] Clarke N.S., Hall P.G., Adsorption of Water Vapor by iron Oxides. 2. Water Isotherms and X-Ray photoelectron Spectroscopy, Langmuir, 7, p. 678 (1991).
[7] Ardizzone S., Trasatti S., Interfacial Properties of Oxides with Technological Impact in Electrochemistry, Adv. Colloids Interf. Sci., 64, p. 173 (1996).
[8] Henderson M.A., The Influence of Oxide Surface Structure on Adsorbate Chemistry: Desorption of Water from the Smooth, the Microfaceted and the ion Sputtered Surfaces of TiO2 (100), Surf. Sci., 319, p. 315 (1994).
[9] Ardizzone S., Daghetti A., Franceschi L., Trasatti S., The point of Zero Charge of Hydrous RuO2, Colloids Surf., 35, p. 85 (1989).
[10] Gellings P.J., Bouwmeester H.J.M., Solid State Aspects of Oxidation Catalysis, Catal. Today, 58, p. 1 (2000).
[11] Kroger F.A., Vink H.J., Relations Between the Concentrations of Imperfections in Crystalline Solids, Solid State Phys., 3, p. 307 (1956).
[12] Burke L.D., Murphy O.J., Cyclic Voltammetry as a Technique for Determining the Surface Area of RuO2 Electrodes, J. Electroanal. Chem., 96, p. 19 (1979).
[13] Sarinell K.F., Zeller R.L., Adams J.A., Electrochemically Active Surface Area, J. Electrochem. Soc., 137, p. 489 (1990).
[14] Addi A.A., Douch J., Hamdani M., Electrochemical Characterization of Co3O4 Thin Films Produced by Chemical Spray Pyrolysis, Bull. Electrochem., 15, p. 556 (1999).
[15] Spinolo G., Ardizzone S., Trasatti S., Surface Characterization of Co3O4 Electrodes Prepared by the Sol-Gel Method, J. Electroanal. Chem., 423, p. 49 (1997).
[16] Miyata S., Anion-Exchange Properties of Hydrotalcite-Like Compounds, Clays Clay Min., 31, p. 305 (1983).
[17] Niesen T.P., De Guire M.R., Deposition of Ceramic Thin Films at Low Temperatures from Aqueous Solutions, J. Electroceram., 6, p. 169 (2001).
[18] Niesen T.P., De Guire M.R., Review: Deposition of Ceramic Thin Films at Low Temperatures from Aqueous Solutions, Solid Stat Ion., 151, p. 61 (2002).
[19] Therese G.H.A., Kamath P.V., Electrochemical Synthesis of Metal Oxides and Hydroxides, Chem. Mater., 12, p. 1195 (2000).
[20] Matsumoto Y., Morikawa T., Adachi H., Hombo J., A New Preparation Method of Barium Titanate Perovskite Film Using Electrochemical Reduction, Mater. Res. Bull., 27, p. 1319 (1992).
[21] Dobos D., “Electrochemical Data”, Elsevier, New York, (1975).
[22] Dixit M., Kamath P.V., Kumar V.G., Munichandraiah N., Shukla A.K., An Electrochemically Impregnated Sintered-Nickel Electrode, J. Power Sources, 63, p. 167 (1996).
[23] Wohlfahrt-Mehrens M., Oesten R., Wilde P., Huggins R.A., The Mechanism of Electrodeposition and Operation of Ni(OH)2 Layers, Solid State Ion., 86-88, p. 841 (1996).
[24] Murthy M., Nagarajan G.S., Weidner J.W., Zee J.W.V., A Model for the Galvanostatic Deposition of Nickel Hydroxide, J. Electrochem. Soc., 143, p. 2319 (1996).
[25] Wronski Z.S., Materials for Rechargeable Batteries and Clean Hydrogen Energy Storage, Int. Mater. Rev., 46, p. 1 (2001).
[26] Elumalai P., Vasan H.N., Munichandraiah N., Electrochemical Studies of Cobalt Hydroxide-an Additive for Nickel Electrodes, J. Power Sources, 93, p. 201 (2001).
[27] Srinivasan V., Weidner J.W., Capacitance Studies of Cobalt Oxide Films Formed via Electrochemical Precipitation, J. Power Sources, 108, p. 15 (2002).
[28] Barrera E., GonzalezI., Viveros T., A New Cobalt Oxide Electrodeposit Bath for Solar Absorbers, Solar Energy Mater. Solar Cells, 51, p. 69 (1998).
[29] Zhu J., Kailasam K., Fischer A., Thoma A.s, Supported Cobalt Oxide Nanoparticles as Catalyst for Aerobic Oxidation of Alcohols in Liquid Phase, ACS Catal., 1, p. 342 (2011).
[30] Silva G.C., Fugivara C.S., Tremiliosi Filho G., Sumodjo P.T.A., Benedetti A.V., Electrochemical Behavior of Cobalt Oxide Coatings on Cold-Rolled Steel in Alkaline Sodium Sulfate, Electrochim. Acta., 47, p. 1875 (2002).
[31] Leslie-Pelecky D.L., Rieke R.D., Magnetic Properties of Nanostructured Materials, Chem. Mater., 8, p. 1770 (1996).
[32] Kadam L.D., Pawar S.H., Patil P.S., Studies on Ionic Intercalation Properties of Cobalt Oxide Thin Films Prepared by Spray Pyrolysis Technique, Mater. Chem. Phys., 68, p. 280 (2001).
[33] Tench D., Warren L.F., Electrodeposition of Conducting Transition Metal Oxide/Hydroxide Films from Aqueous Solution, J. Electrochem. Soc., 130, p. 869 (1983).
[34] Jasem S., Tseung A.C.C., Proc. Symp. on Electrode Materials and Processes for Energy Conversion and Storage, NJ,The Electrochem. Soc., Princeton, p. 414(1977).
[35] Cataldi T.R.I., Guerrieri, A. Casella I.G., Desimoni E., Study of a Cobalt-Based Surface Modified Glassy Carbon Electrode: Electrocatalytic Oxidation of Sugars and Alditols, Electroanalysis, 7, p. 305 (1995).
[36] Fan L.F., Wu X.Q., Guo M.D., Gao Y.T., Cobalt Hydroxide Film Deposited on Glassy Carbon Electrode for Electrocatalytic Oxidation of Hydroquinone, Electrochim. Acta, 52, p. 3654 (2007).
[37] Fan L.F., Wu X.Q., Guo M.D., Gao Y.T., Cobalt Hydroxide Film Deposited on Glassy Carbon Electrode for Electrocatalytic Oxidation of Hydroquinone, Electrochim. Acta, 52, p. 3654 (2007).
[38] Salimi A., Hallaj R., Soltanian S., Mamkhezri H., Nanomolar Detection of Hydrogen Peroxide on Glassy Carbon Electrode Modified with Electrodeposited Cobalt Oxide Nanoparticles, Anal. Chim. Acta, 594, p. 24 (2007).
[39] Houshmand M., Jabbari A., Heli H., Hajjizadeh M., Moosavi-Movahedi A.A., Electrocatalytic Oxidation of Aspirin and Acetaminophen on a Cobalt Hydroxide Nanoparticles Modified Glassy Carbon Electrode, J. Solid State Electrochem., 12, p. 1117 (2008).
[40] Casella I.G., Guascito M.R., Electrochemical Preparation of a Composite Gold-Cobalt Electrode and Its Electrocatalytic Activity in Alkaline Medium, Electrochim. Acta, 45, p. 1113 (1999).
[41] Heli H., Sattarahmady N., Majdi S., A Study of the Charge Propagation in Nanoparticles of Fe2O3 Core-Cobalt Hexacyanoferrate Shell by Chronoamperometry and Electrochemical Impedance Spectroscopy, J. Solid State Electrochem., 16, p. 53 (2012).
[42] Inzelt G., in: Bard A.J. (ed.), “Electroanalytical Chemistry”, vol. 18. Marcel Dekker, New York, (1994).
[43] Dalton E.F., Surridge N.A., Jernigan J.C., Wilbourn K.O., Facci G.S., Murray R.W., Charge Transport in Electroactive Polymers Consisting of Fixed Molecular Redox Sites, Chem. Phys., 141, p. 143 (1990).
[44] Surridge N.A., Jernigan J.C., Dalton E.F., Buck R.P., Watanabe M., Zhang H., Pinkerton M., Wooster T.T., Longmire M.L., Facci J.S., Murray R.W., The Electrochemistry Group Medal Lecture. Electron Self-Exchange Dynamics Between Redox Sites in Polymers, Faraday Discuss. Chem. Soc., 88, p. 1(1989).
[45] Markov L., Petrov K.,. Lyubchova A, Topotactic Preparation of Copper-Cobalt Oxide Spinels by Thermal Decomposition of Double-Layered Oxide Hydroxide Nitrate Mixed Crystals, Solid State Ion., 39, p. 187 (1990).
[46] Barbero C., Planes G.A., Miras, M.C. Redox Coupled Ion Exchange in Cobalt Oxide Films, Electrochem. Commun., 3, p. 113 (2001).
[47] Casella I.G., Gatta M., Study of the Electrochemical Deposition and Properties of Cobalt Oxide Species in Citrate Alkaline Solutions, J. Electroanal. Chem., 534, p. 31 (2002).
[48] Svegl F., Orel B., Svegl I.G., Kaucic C.V., Characterization of spinel Co3O4 and Li-Doped Co3O4 thin Film Electrocatalysts Prepared by the Sol-Gel Route, Electrochim. Acta,45, p. 4359 (2000).
[49] Palmas S., Ferrara F., Vacca A., Mascia M., Polcaro A.M., Behavior of Cobalt Oxide Electrodes During Oxidative Processes in Alkaline Medium, Electrochim. Acta, 53, p. 400 (2007).
[50] Laviron E., A Multilayer Model for the Study of Space Distributed Redox Modified Electrodes: Part III. Influence of Interactions Between the Electroactive Centers in the First Layer on the Linear Potential Sweep Voltammograms, J. Electroanal. Chem., 122, p. 37 (1981).
[51] Daum P., Lenhard J.R., Rolison D., Murray R.W., Diffusional Charge Transport through Ultrathin Films of Radiofrequency Plasma Polymerized Vinylferrocene at Low Temperature, J. Am. Chem. Soc., 102, p. 4649 (1980).
[52] Wrighton M.S., Palazzotto M.C., Bocarsly A.B., Bolts J.M., Fischer A.B., Nadjo L., Preparation of Chemically Derivatized Platinum and Gold Electrode Surfaces. Synthesis, Characterization, and Surface Attachment of Trichlorosilylferrocene, (1,1'-Ferrocenediyl)Dichlorosilane, and 1,1'-Bis(Triethoxysilyl)Ferrocene, J. Am. Chem. Soc., 100, p. 7264 (1978).
[53] Laviron E., General Expression of the Linear Potential Sweep Voltammogram in the Ccase of Diffusionless Electrochemical Systems, J. Electroanal. Chem., 101, p. 19(1979).
[54] Bard A.J., Faulkner L.R., “Electrochemical Methods”, John Wiley, New York, (2001).
[55] Majdi S., Jabbari A., Heli H., Moosavi-Movahedi A.A., Electrocatalytic Oxidation of Some Amino Acids on a Nickel-Curcumin Complex Modified Glassy Carbon Electrode, Electrochim. Acta, 52, p. 4622(2007).
[56] Motupally S, Streinz C.C., Weidner J.W., Proton Diffusion in Nickel Hydroxide, J. Electrochem. Soc., 145, p. 29(1998).
[57] Gabrielli C., Keddam M., Nadi N., Perrot H., a.c. Electrogravimetry on Conducting Polymers. Application to Polyaniline, Electrochim. Acta, 44, p. 2095 (1999).
[58] Nemudry A., Rudolf P., Schollhorn R., Topotactic Electrochemical Redox Reactions of the Defect Perovskite SrCoO2.5+x, Chem. Mater., 8, p. 2232 (1996).
[59] Barsoukov E., Macdonald J.R., “Impedance Spectroscopy”, John Wiley, New Jersey, (2005).
[60] Neves, R.S. Robertis E.D., Motheo A., Capacitance Dispersion in EIS Measurements of Halides Adsorption on Au(2 1 0), Electrochim. Acta, 51, p. 1215 (2006).
[61] Diard J.P., Le Gorrec B., Montella C., “Cinetique Electrochimique”, Hermann, Paris, (1996).
[62] Gupta V., Kusahara T., Toyama H., Gupta S., Miura N., Potentiostatically Deposited Nanostructured α-Co(OH)2: A High Performance Electrode Material for Redox-Capacitors, Electrochem. Commun., 9, p. 2315 (2007).
[63] Bisquert, J. Compte A., Theory of the Electrochemical Impedance of Anomalous Diffusion, J. Electroanal. Chem., 499, p. 112 (2001).
[64] Kondratiev, V.V. Tikhomirova A.V., Malev V.V., Study of Charge Transport Processes in Prussian-Blue Film Modified Electrodes, Electrochim. Acta, 45, p. 751 (1999).
[65] Garcia-Jareno J.J., Navarro-Laboulais J., Sanmatias A., Vicente F., The Correlation Between Electrochemical Impedance Spectra and Voltammograms of PB Films in Aqueous NH4Cl and CsCl, Electrochim. Acta, 43, p. 1045 (1998).