Simulation and Techno-Economic Investigation of Solar Assisted Single-Effect Water-Lithium Bromide Absorption Chiller

Document Type : Research Article


Chemical & Petroleum Engineering Department, Sharif University of Technology, I.R. IRAN


Solar energy is a renewable and crucial form of energy for many natural processes on the Earth. The application of solar energy to provide hot water, heating and cooling of residential area has been considered in Iran in recent decades. In this paper, simulation and techno-economic investigation of a single-effect water-lithium bromide solar absorption chiller in Isfahan climate is presented. A single effect absorption chiller with a capacity of 19 kW (5 tons of refrigeration), providing cooling for a 200 m2 residential area is proposed. Maximum energy required for cooling such a building is 17 kW, which occurs in July. The daily occupancy schedule is considered between 7a.m. and 7p.m. and the cooling schedule is considered between May 1st to September 30th. At low solar radiation, the system operates with the energy stored in the storage tank and with an auxiliary heater. Economic results show that the evacuated tube collector with total absorber area of 30m2 is the best option in this plant. This system in comparison to a similar capacity direct-fired absorption chiller will save 895 m3 of natural gas per year.


Main Subjects

[1] Keyanpour-Rad M., Haghgou H.R., Bahar F., Afshari E., Feasibility Study of the Application of Solar Heating Systems in Iran, Renewable Energy, 20: 333-345 (2000).
[3] آقانجفی، سیروس؛ دهقانی، علی‌رضا؛ "انتقال حرارت تابشی خورشید و کاربرد آن در ساختمان"، انتشارات دانشگاه خواجه نصیر الدین طوسی، تهران، (1386).
[4] Dieng A.O., Wang R.Z., Literature Review on Solar Adsorption Technology for Ice-Making and Air-Condition Purposes and Recent Developments in Solar Technology, Renewable and Sustainable Energy Reviews, 5: 313-342 (2001).
[5] Ishimatsu M., Yazaki Co, "Advanced Absorption Chillers Utilization of Various Heat Energies for Air-Conditioning, "1st European Conference on Polygeneration", pp. 235-243 (2007). 
[6] "ASHRAE Handbook of Fundamentals", American Society of Heating (2002).
[8] J.A. Duffie, W.A. Beckman, "Solar Engineering of Thermal Processes", John Wiley (1991).
[10] آقانجفی، سیروس؛ دهقانی، علی‌رضا؛ "انرژی تشعشع خورشیدی پیشرفته و کاربردهای صنعتی"، انتشارات دانشگاه صنعتی خواجه نصیر الدین طوسی، ، تهران، (1386).
[11] Ghaddar N.K., Shihab M., Bdeir F., Modeling and Simulation of Solar Absorption System Performance in Beirut, Renewable Energy, 10: 539-558 (1997).
[12] Assilzadeh F., Kalogirou S.A., Ali Y., Sopian K., Simulation and Optimization of a LiBr Solar Absorption Cooling System with Evacuated Tube Collectors, Renewable Energy, 30: 1143-1159 (2005).
[13] Sparber W., Napolitano A., Melograno P., Overview on Worldwide Install Solar Cooling Systems, "Proceeding of 2nd International Conference on Solar Air Conditioning", pp. 134-152 (2007).
[14] Venegas M., Rodriguez-Hidalgo M.C, Salgado R., Lecuona A., Rodriguez P., Gutierrez G., Experimental Diagnosis of the Influence of Operational Variables on the Performance of a Solar Absorption Cooling System, Applied Energy, 88: 1447-1454 (2011).
[15] Hammad M., Zurigat Y., Performance of the Second Generation Solar Cooling Unit, Solar Energy, 62: 79-84 (1998).
[16] Bong T.Y., NG K.C., Tay A.O., Performance Study of a Solar Powered Air Conditioning System, Solar Energy, 39: 173-182 (1987).
[17] Yeung M.R., Yuen P.K., Dunn A., Cornish L.S., Performance of a Solar Powered Air Conditioning System in Hong Kong, Solar Energy, 48: 309-319 (1992).
[18] Florides G.A., Kalogirou S.A., Tassou S.A., Wrobel L.C., Modeling, Simulation and Warming Impact Assessment of a Domestic-Size Absorption Solar Cooling System, Applied Thermal Engineering, 22: 1313-1325 (2002).
[19] Bermejo P., Pino F.J., Rosa F., Solar Absorption Cooling Plant in Seville, Solar Energy, 84: 1503-1512 (2010).
[21] یزدان‌پناه، حجت الله؛ میرمجربیان، راضیه؛ برقی، حمید؛ برآورد تابش کلی خورشید در سطح افقی زمین در اصفهان، مجله جغرافیا و برنامه‌ریزی محیطی، 37: 95 تا 104 (1389).