Synthesis of Silver Nanoparticles (Ag NPs) via Four Kinds of Plants Extract and Investigation of Antimicrobial Activity of these Nanoparticles

Document Type : Research Article


1 Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, I.R. IRAN

2 Nanobiotechnology Research Center, Avicenna Research Institute-ACECR, Tehran, I.R. IRAN


The present study was based on an economical, eco-friendly, and efficient method for the green synthesis of silver nanoparticles in plant extract. This synthesis shows attractive characteristics such as; the use of inexpensive and available plant extracts, non-toxicity, eco-friendly biological materials, and operational simplicity. The extracts incubated with AgNO3 solution showed gradual change in color of the extracts to yellowish brown, with intensity increasing during the period of incubation. Characterization of synthesized silver nanoparticles was made by UV–Visible absorption spectroscopy, Transmission Electron Microscope (TEM), and X-Ray Diffraction (XRD) spectroscopy. The silver nanoparticles synthesized were generally found to be spherical in shape with variable size ranging from 5 to 30 nm, as evident by Transmission Electron Microscopy (TEM). The biosynthesized silver nanoparticles (AgNPs) showed good antibacterial activity against clinical strains of two bacteria (E. coli, and S. aureus).


Main Subjects

[1] McNeil S. E., Leukoc J., Nanotechnology for the Biologist,  J Leukoc Biol., 78: 585-594 (2005).
[2] Wang S., Chen T., Chen R., Hu Y., Chen M., Wang, Y., Emodin Loaded Solid Lipid Nanoparticles: Preparation, Characterization and Antitumor Activity Studies, International Journal of Pharmaceutics, 430: 238-246  (2012)
[3] Yamasaki S., Yamada T., Kobayashi H., Kitagawa H., Preparation of Sub-10 nm AgI Nanoparticles and a Study on their Phase Transition Temperature, Chemistry-An Asian Journal,  8: 73-75 (2013).
[4] ذاکری م.، فصیحی ج.، تولید نانوذرات طلا با استفاده از توده زیستی گندم و ببرسی پارامترهای موثر، نشریه شیمی و مهندسی شیمی ایران، (2)30، 35 تا 41 (1390).
[5] Hu, J., Cai W., Li Y., Zeng, H., Oxygen-Induced Enhancement of Surface Plasmon Resonance of Silver Nanoparticles for Silver-Coated Soda-Lime Glass, Journal of Physics: Condensed Matter, 17: 5349-5354 (2005).
[6] Choi B., Lee H., Jin S., Chun S., Kim S., Characterization of the Optical Properties of Silver Nanoparticle Films,Nanotechnology, 18 : 1-5 (2007).
[7] Lu Y., Spyra P., Mei Y., Ballauff M., Pich A., Composite Hydrogels: Robust Carriers for Catalytic Nanoparticles, Macromolecular Chemistry and Physics, 208: 254-261 (2007).
[8] Song H.Y., Ko K.K., Oh I.H.,  Lee, B.T.,  Fabrication of Silver Nanoparticles and Their Antimicrobial Mechanisms, European cells & Materials, 11: 58 (2006).
[9] Homaunfar V., Tohidi S.H., Grigoryan G., Characterization of Sol-Gel Derived Cuo@Sio2 Nanocatalysts towards Gas Phase Reactions, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 32: 37-44 (2013).
[10] Maheswari R. U., Prabha A. L., Nandagopalan V., Anburaja V.,  Green Synthesis of Silver Nanoparticles by Using Rhizome Extract of Dioscorea oppositifolia L. and Their Anti Microbial Activity Against Human Pathogens, Journal of Pharmacy and Biological Sciences, 1: 38-42 (2012).
[11] Shrivastava S., Bera T., Roy A., Singh G., Ramachandrarao P., Dash, D., Characterization of Enhanced Antibacterial Effects of Novel Silver Nanoparticles, Nanotechnology. 18: 1-9 (2007).
[12] Kamali M., Ghorashi S. A. A., Asadollahi M.A., Controlled Synthesis of Silver Nanoparticles Using Citrate as Complex Agent: Characterization of Nanoparticles and Effect of pH on Size and Crystallinity, Iranian Journal of Chemistry & Chemical Engineering (IJCCE), 31: 21-28 (2012).
[13] Bajpai S.K., Yallapu M.M., Bajpai M., Tankhiwale R., Thomas V., Synthesis of Polymer Stabilized Silver and Gold Banostructures, Journal of Nanoscience and Nanotechnology, 7: 2994-3010 (2007).
[14] Guari Y., Thieuleux C., Mehdi A., Reye C. R.,  Corriu J. P., Gomez-Gallardo S., Philippot K., Chaudret B.,In Situ Formation of Gold Nanoparticles within Thiol Functionalized HMS-C16 and SBA-15 Type Materials via an Organometallic Two-Step Approach, Chemistry of Materials, 15: 2017-2024 (2003).
[15] Mayya K. S., Schoeler B., Caruso F.,Preparation and Organization of Nanoscale Polyelectrolyte-Coated Gold Nanoparticles, Advanced Functional Materials, 13: 183-188 (2003).
[16] Ohno K., Koh, K. Tsujii Y., Fukada T.,Fabrication of Ordered Arrays of Gold Nanoparticles Coated with High-Density Polymer Brushes, Angewandte Chemie International Edition, 42: 2751-2754 (2003).
[17] غلامی شعبانی م.، ایمانی ا.، رزاقی ابیانه م.، ریاضی غ.، چیانی م.، خادمی س.، چمنی م.، اکبرزاده، ع.، بررسی خواص آنتی باکتریال سطوح دارای پوشش نانو ذرات نقره زیست سنتز شده با قارچ فوزاریوم اگزیسپورومدر مقیاس آزمایشگاهی، مجله علمی پژوهشی زیست فناوری میکروبی، دانشگاه آزاد اسلامی، 3: 24 (1390).
[18] Zare B., Babaie Sh., Setayesh N., Shahverdi A.R., Isolation and Characterization of a Fungus for Extracellular Synthesis of Small Selenium Nanoparticles,Journal of Nanomedicine, 1: 13-19 (2013).
[19] Shankar S.S., Ahmad A., Sastry, M., Geranium Leaf Assisted Biosynthesis Of Silver Nanopaerticles, Biotechnology Progress, 19: 1627-1631 (2003).
[20] Plyuto Y., Berquier J. M., Jacquiod C., Ricolleau C., Ag nanoparticles Synthesised in Template-Structured Mesoporous Silica Films on a Glass Substrate, Chemical Communications, 17: 1653-1654  (1999).
[21] Tan W.B., Zhang Y.,Surface Modification of Gold and Quantum dot Nanoparticles with Chitosan for Bioapplications, Journal of Biomedical Materials Research Part A, 75: 56-62 (2005).
[22] Yong Song J., Soo Kim B., Rapid Biological Synthesis Of Silver Nanoparticles Using Plant Leaf Extracts, Bioprocess and Biosystems Engineering, 32: 79-84 (2009).
[23] Tanori J., Pileni M.P.,Control of the Shape of Copper Metallic Particles by Using a Colloidal System as Template, Langmuir. 13: 639-646 (1997).
[24] نقش ن.، صفری م.، حاج مهرایی پ.، بررسی اثر نانوذرات نقره بر رشد باکتری اشرشیا کلی، مجله دانشگاه علوم پزشکی قم، 6 ،65 تا 68 (1391).
[25] Lin D. H., Xing B. S., Phytotoxicity of أanoparticles: Inhibition of Seed Germination and Root Growth, Environmental Pollution, 150: 243-250 (2007).
[26] Martel S., Method and System for Controlling Micro-Objects or Micro-Particles, United States patent. US 20100215785; Appl. 11/145, 007 (2005).
[27] Jones G.L., Muller C.T., O’Reilly M., Stickler D. J., Effect of Triclosan on the Development of Bacterial Biofilms by Urinary Tract Pathogens on Urinary Catheters, Journal of Antimicrobial Chemotherapy, 57: 266-272 (2006).
[28] Amanda S., Mohammad F., John J., Schlager D., Syed A., Metal-Based Nanoparticles and Their Toxicity Assessment, Journal of Nanomedicine & Nanotechnology, 2: 544-568 (2010).