Photocatatalytic Degradation of an Azo Dye by TiO2 Nanocomposites Modified with Pt, Pd and Ni

Document Type : Research Article


1 Malek Ashtar University of Technology, Tehran, I.R. IRAN

2 Department of Chemistry, Sharif University of Technology, Tehran, I.R. IRAN


TiO2 nanoparticles were synthesized by sol-gel method. The modification of prepared nanoparticles was achieved with transition metals Pt, Pd and Ni. The prepared photocatalysts were characterized by XRD, BET, SEM, DRS and FT-IR Techniques. The kinetic and efficiency of photocatalytic degradation of azo dyeAB92 were investigated. The effect of some parameters such as catalyst concentration, acidity of medium, dye concentration, calcination temperature and the type of doped metal on degradation efficiency were investigated. The experimental results were indicated that the photocatalytic degradation rate is strongly influenced by pH and also it was found that the best calcination temperature is 500ºC.


Main Subjects

[1] Bank W., “Pollution Prevention and Abatement Handbook 1998: Toward Cleaner Production”, World Bank Publications, New York, (1999).
[2] Di Paola, A., Garc´ıa-López E., Ikeda S., Marc`ı G., Ohtani B., Palmisano L., Photocatalytic Degradation of Organic Compounds in Aqueous Systems by Transition Metal Doped Polycrystalline TiO2, Catalysis Today, 75: 87-93 (2002).
[3] Ghasemi S., Rahimnejad S., Rahman Setayesh S., Hosseini M., Golami M.R., Kinetics Investigation of the Photocatalytic Degradation of Acid Blue 92 in Aqueous Solution Using Nanocrystalline TiO2 Prepared in an Ionic Liquid, progress in reaction kinetics and mechanism, 34: 55-76 (2009).
 [4] Ghasemi S., Rahimnejad S., Rahman Setayesh S., Rohani S., Golami M.R., Transition Metal Ions Effect on the Properties and Photo Catalytic Activity of Nanocrystalline TiO2 Prepared in an Ionic Liquid, Journal of Hazardous Materials, 172: 1573-1578 (2009).
[5] Tayade R.J., Kulkarni R.G., Jasro R.V., Transition Metal Ion Impregnated Mesoporous TiO2 for Photocatalytic Degradation of Organic Contaminants in Water, Industrial & Engineering Chemistry Research, 45: 5231-5238 (2006).
[6] Arami M., Yousefi Limaee N., Mahmoodi N.M., Salman Tabrizi N., Equilibrium and Kinetics Studies for the Adsorption of Direct and Acid Dyes from Aqueous Solution by Soy Meal Hull, Journal of Hazardous Materials 135: 171-179 (2006).
[7] Gautam S., Kamble S.P., Sawant S.B., Pangarkar V.G., Photo Catalytic Degradation of 4-Nitroaniline Using Solar and Artificial UV Radiation, Chemical Engineering Journal, 110: 129-137 (2005).
[8] Streetman B.G., Banerjee S., “Solid State Electronic Devises”, 4th ed., Pearson Prentice Hall, Englewood, (1995).
[9] Linsebigler A.L., Lu G., Yates J.T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms and Selected Results, Chemical Reviews, 95: 735-758 (1995).
[10] Kaneko M., Okura I., “Photo Catalysis, Science and Technology”, Springer, Germany, (2002).
[11] Hagfeldt A., Graetzel M., Light-Induced Redox Reaction in Nanocrystalline Systems, Chemical Reviews, 95: 49-68 (1995).
[12] Kamat P.V., Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces, Chemical Reviews, 93: 267-300 (1993).
[13] Serpone N., Pelizzetti E., “Photocatalysis: Fundamentals and Application”, John Wiley & Sons, New York, (1989).
[14] Ling W., "New Synthetic Routes to Nanostructured Photocatalysts with High Activity", Ph.D. Thesis, The Chinese University of Hong Kong, (2005).
[15] Mills A., Le Hunts S., An Overview of Semiconductor Photocatalysis, Journal of Photochemistry and photobiology A: Chemistry, 108: 1-35 (1997).
[16] Fox M.A., Dulay M.T., Heterogeneous Photocatalysis, Chemical Reviews, 93: 341-357 (1993).
[17] Linsebigler A.L., Lu G., Yates J.T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, 95: 735-758 (1995).
[18] Fujishima A., Hashimoto K., Watanabe T., “TiO2 Photocatalysis: Fundamentals and Application”, Bkc, Tokyo, (1999).
[19] Nalwa H.S., “Handbook of Advanced Electronic and Photonic Materials and Devices”, Acadmic Press, USA, (2001).
[20] Ching W.Y., Theoretical Studies of the Electronic Properties of Ceramic Materials, Journal of the American Ceramic Society, 73: 3135-3160 (1990).
[21] Ahmed M.S., Attia Y.A., Aerogel Materials for Photocatalytic Detoxification of Cyanide Wastes in Water, Journal of Non-Crystalline Solids, 186: 402-407 (1995).
[22] Balasubramanian G., Dionysiou D.D., Suidan M.T., “Dekker Encyclopedia of Nanoscience and Nanotechnology”, Vol. 6, Marcel Dekker Inc., New York, (2004).
[23] زمان­خان، حسام؛ آیتی، بیتا؛ گنجی­دوست، حسین؛ تجزیه فتوکاتالیستی فنل به وسیله نانوذرات روی اکسید تثبیت شده بر بستر بتنی، نشریه شیمی و مهندسی شیمی ایران، (3 و 4)31: 9 تا 19 (1391).
[24] آقائی، مهران؛  خضری، بهروز؛  زارع، کریم؛ آقائی، حسین؛ مطالعه سینتیکی احیای فتوکاتالیستی 2CO  با O2H با استفاده از کاتالیست 2TiO، نشریه شیمی و مهندسی شیمی ایران، (30)2: 89 تا 94 (1390).
[25] Hagen J., “Industrial Catalysis: A Practical Approach”, Second Edition, John Wiley & Sons, Germany, (2006).
[26] Zhengfei S., "Novel Sol-Gel Nanoporous Materials, Nanocomposites and Their Applications  in Bioscience", Ph.D. Thesis, Drexel University, USA, (2005).
[27] Alves de Lima R.O., Bazo, A.P., Fávero Salvadori, D.M., Rech C.M., de Palma Oliveira D., de Aragao Umbuzeiro G., Mutagenic and Carcinogenic Potential of a Textile Azo Dye Processing Plant Effluent That Impacts a Drinking Water Source, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 626: 53-60 (2007).
[28] Komstantinou I.K., Albanis T.A., TiO2- Assistaed Photocatalytic Degradation of Azo Dyes Aqueous Solution: Kinetic and Mechanistic Investigations, A Review, Applied Catalysis B: Environmental, 49: 1-14 (2004).
[29] Ishibai Y., Sato J., Nishikawa T., Miyagishi S., Synthesis of Visible Light Active TiO2 Photocatalyst with Pt- Modification: Role of TiO2 Substrate for High Photocatalytic Active, Applied Catalysis B: Environmental, 79: 117-121 (2008).
[30] Kwon J.M., Kim Y.H., Song B.K., Yeom S.H., Kim B.S., Im J.B., Novel Immobilization of Titanium Dioxide (TiO2) on the Fluidizing Carrier and its Application to the Degradation of Azo-Dye, Journal of Hazardous Materials, 134: 230-236 (2006).
[31] Koelsch M., Cassaignon S., Guillemoles J.F., Olivet J.P., Comparison of Optical and Electrochemical Properties of Anatase and Brookite TiO2 Synthesized by the Sol-Gel Method, Thin soild Film, 403-404: 312-319 (2002).
[32] Bizani E., Fytianos K., Poulios I., Tsiridis V., Photocatalytic Decolorization and Degradation of Dye Solutions and Waste Waters in the Presence of Titanium Dioxide, Journal of Hazardous Materials, 136: 85-94 (2006).
[33] Tanaka K., Pedermpole K., Hisanaga T, Photocatalytic Degradation of Commercial Azo Dyes, Water Research, 34: 327-333 (2000).