Catalytic Activity of CuO Nanoparticles on Thermal Decomposition of Ammonium Perchlorate

Document Type : Research Article


1 Department of Chemistry and Engineering Chemistry, Malek Ashtar University of Technology, Tehran, I.R. IRAN

2 Associate Professor, Department of Chemistry and Engineering Chemistry, Malek Ashtar University of Technology, Tehran, I.R. IRAN


This research is on the thermal decomposition of ammonium perchlorate activated by addition of commercial CuO nanoparticles. CuO nanoparticles were characterized by X-Ray Diffraction (XRD) and Transition Electron Microscope (TEM). TEM image shows that the CuO nanoparticles have a nearly spherical morphology. The catalytic activities of the CuO nanoparticles on the thermal decomposition of Ammonium Perchlorate (AP) were evaluated by Thermo-Gravimetric Analysis and Differential Scanning Calorimeter (TGA/DSC), which results show that, in presence of 2 and 5 wt% of CuO nanoparticles, the thermal decomposition temperature of AP decreased by 61.11 and 72.59 °C, respectively. Also, results imply that the heat decomposition of AP was increased by 528.51 and 535.11 J/g in the presence of 2 and 5 wt% of CuO nanoparticles, respectively. TGA data was used to evaluate kinetic parameters of samples by model fitting method and values of A, Ea, ∆G, ∆H, and ∆S were obtained


Main Subjects

[1] Chunwei W., Kyl S., Snehaunshu C., Guoqiang J., Lei Z., Michael R.Z., Encapsulation of Perchlorate Salts within Metal Oxides for Application as Nanoenergetic OxidizersAdvanced Functional Materials22 (1): 78-85 (2012).
[2] John A., Christopher J., “Chemistry of Pyrotechnics Basic Principles and Theory”, CRC Press, Second Edition (2011).
[3] Singh N.B., Ojha A.K., Co-precipitation of a Mixture of CuO and Cr2O3 Through NaNO3-KNO3 Eutectic Mixture and its Catalytic Activity, Indian Journal of Chemistry42 (10): 2475-2479 (2003).
[4] Carnes L.C., Klabunde K.J., The Catalytic Methanol Synthesis over Nanoparticle Metal Oxide CatalystsJournal of Molecular Catalysis A: Chemical194 (1-2): 227-236 (2003).
[5] Fujimura K., Miyake A., The Effect of Specific Surface Area of TiO2 on the Thermal Decomposition of Ammonium Perchlorate, Journal of Thermal Analysis & Calorimetry99 (1): 27–31 (2010).
[6] Chen L.J., Li G.S., Qi P., Li L.P., Thermal Decomposition of Ammonium Perchlorate Activated via Addition of NiO NanocrystalsJournal of Thermal Analysis and Calorimetry92 (3): 765-769 (2008).
[7] Zhang W.J., Li P., Xu H.B., Sun R., Qing P., Zhang Y., Thermal Decomposition of Ammonium Perchlorate in the Presence of Al(OH)3·Cr(OH)3 NanoparticlesJournal of Hazardous Materials268: 273-280 (2014).
[8] Zheng X., Li P., Zheng S., Zheng Y., Thermal Decomposition of Ammonium Perchlorate in the Presence of Cu(OH)2·2Cr(OH)3 NanoparticlesPowder Technology268: 446-451 (2014).
[10] Yadav T.P., Yadav R.M., Singh D., Mechanical Milling: a Top down Approach for the Synthesis of Nanomaterials and NanocompositesNanoscience and Nanotechnology2 (3): 22-48 (2012).
[11] Sharma J.K., Srivastava P., Singh G., Akhtar M.S., Ameen S., Green Synthesis of Co3O4 Nanoparticles and their Applications in Thermal Decomposition of Ammonium Perchlorate and Dye-Sensitized Solar CellsMaterials Science and Engineering B193: 181–188 (2015).
[12] Sharma J.K., Srivastava P., Singh G., Akhtar M.S., Ameen S., Biosynthesized NiO Nanoparticles: Potential Catalyst for Ammonium Perchlorate and Composite Solid PropellantsCeramics International41 (1): 1573–1578 (2015).
[13] Singh G., Kapoor I. P. S., Dubey S., Siril P.F., Preparation, Characterization and Catalytic Activity of Transition Metal Oxide NanocrystalsJournal of Scientific Conference ProceedingsUnited States of America1: 11-17 (2009).
[14] بزرگ نیا، مریم؛ توفیقی داریان، جعفر، ارایه‌ی یک مدل سینتیکی و مدل‌سازی واکنش‌های تصفیه هیدروژنی گازوییل برج تقطیر خلا، شیمی و مهندسی شیمی ایران، (3)32: 31-38 (1392).
[15] Yang Y., Xinjie Y., Wang J., Wang Y., Effect of the Dispersibility of Nano-CuO Catalyst on Heat Releasing of AP/HTPB PropellantJournal of Nanomaterials2011: 1-5 (2011).
[16] Janasi S.R., Rodrigues D., Landgraf F.J.G., Effect of Calcination Conditions on the Magnetic Properties of MnZn Ferrites Powders Produced by Co PrecipitationMaterials Science Forum498: 119-124 (2005).
[17] Lei S.J., Tang K.B., Zheng H.G., Preparation of α-Mn2O3 and MnO from Thermal Decomposition of MnCO3 and Control of MorphologyMaterials Letters60 (1): 1625-1628 (2006).
[18] Hong Z.S., Cao Y., Deng J.F., A Convenient Alcohothermal Approach for low Temperature Synthesis of CuO Nanoparticles Materials Letters52 (1-2), 34-38 (2002).
[19] Wang J., Shanshan H., Zhanshuang L., Xiaoyan J., Milin Z., Zhaohua J., Synthesis of Chrysalis Like CuO Nanocrystals and Their Catalytic Activity in the Thermal Decomposition of Ammonium PerchlorateJournal of Chemical Sciences121 (6): 1077-1081 (2009).
[20] Kung H.H., “Transition Metal Oxides: Surface Chemistry and Catalysis”, Elsevier, (1989).
[21] Hinklin J., Azurdia T.R., Kim M., Marchal J.C., Kumar S., Laine R.M., Finding Spinel in All the Wrong PlacesAdvanced Materials20 (7): 1373–1375 (2008).
[22] Boldyrev V.V., Review Thermal Decomposition of Ammonium PerchlorateThermochimica Acta443 (1): 1–36 (2006).
[23] Seiyama T., Egashira M., Iwamoto M., “Some Theoretical Problem of Catalysis”, University of Tokyo Press, Tokyo (1973).
[24] ایومن، اسماعیل؛ احمدوند، هادی؛ قوی، اعظم؛ حسینی، سید قربان، مروری بر کاربرد نانو کاتالیست‌های اکسید فلزی بر تجزیه حرارتی آمونیوم پرکلرات، نشریه تحقیق و توسعه مواد پرانرژی، (3)20: 3 تا 14 (1392).
[25] Joshi S.S., Prajakta R.P., Krishnamurthy N.V., Thermal Decomposition of Ammonium Perchlorate in the Presence of Nano-sized Ferric OxideDefense Science Journal58 (6): 721-727 (2008).
[26] Peng Z., Li S.D., Huang M.F., Xu K., Thermogravimetric Analysis of Methyl Methacrylate-Graft-Natural RubberApplied Polymer Science85 (14): 2952-2955 (2002).
[27] Vyazovkin S., Wight C.A., Isothermal and Nonisothermal Reaction Kinetics in Solids:In Search of Ways toward ConsensusPhysical Chemistry A101 (44): 8279-8284 (1997).
[28] Peng Z., Kong L.X., A Thermal Degradation Mechanism of Polyvinyl Alcohol/Silica NanocompositesPolymer Degradation and Stability92 (6): 1061-1071 (2007).
[29] Carr R.W., "Comprehensive Chemical Kinetics, Modeling of Chemical Reactions", Elsevier, (2007).
[30] Wang D., Kang Y., Lu L., Preparation and Thermal Decomposition Kinetics of Copper(II) Complex with 1-(6-Hydroxynaphthalen-2-yl)butane-1,3-dioneIran. J. Chem. Chem. Eng. (IJCCE)32 (1): 49-56 (2013).
[31] Dubey R., Srivastava P., Kapoor I.P.S., Singh G., Synthesis, Characterization and Catalytic Behavior of Cu Nanoparticles on the Thermal Decomposition of AP, HMX, NTO and Composite Solid Propellants, Part 83Thermochimica Acta549: 102– 109 (2012).
[32] Sestak J., Berggren G., Study of the Kinetics of the Mechanism of Solid State Reactions at Increasing TemperaturesThermochimica Acta3 (1): 1-12 (1971).
[33] Hosseini S.G., Eslami A., Thermoanalytical Investigation of Relative Reactivity of Some Nitrate Oxidants in Tin-Fueled Pyrotechnic SystemsJournal of Thermal Analysis and Calorimetry101 (3): 1111–1119 (2010).
[34] Eslami A., Hosseini S.G., Bazrgary M., Improvement of Thermal Decomposition Properties of Ammonium Perchlorate Particles Using Some Polymer Coating AgentsJournal of Thermal Analysis and Calorimetry, 113 (2):721-730 (2012).
[35] Chang R., “Physical Chemistry for the Biosciences, Sansalito, CA: University Sciences Books (2005).
[36] Low P.S., Bada J.L., Somero G.N., Temperature Adaptation of Enzymes: Roles of the Free Energy, the Enthalpy, and the Entropy of ActivationProceedings of the National Academy of Sciences of the United States of America,70 (2): 430-432 (1973).