Introducing a Method for Reducing Dissolved Impurities in Wet Cooling Towers

Document Type : Research Article

Author

Engineering Faculty, Imam Khomeini International University, Gazvin, I.R. IRAN

Abstract

One of the most efficient systems for transferring the thermal energy from the power plants to the environment is the wet cooling towers. Dissolved impurities, which are entered into the cooling tower by makeup water, can be limited by the blowdown system. In the present paper, the water quality in the wet cooling towers was studied. Analyses showed that the continuous blowdown is more efficient than periodic one. Furthermore, a group of the wet cooling towers with a certain amount of blowdown, the blowdown system of towers can be utilized to reduce the dissolved impurities. For a special case, the effectiveness of the blowdown in a group of five cooling towers has been investigated, and it was shown that with 20 percent blowdown, the average impurity levels in towers can be reduced from six times of the dissolved impurities in water-supply to 2.74.

Keywords

Main Subjects


[1] Romm E.I., "Chemical Displacement and Evaporation in Steam Generators", Doctorate Thesis, VTE, 175 p (1938).
[2] Стыркович М.А.,О применении ступенчатого испарения при кипении котлов конденсатом. Электрические Cтанции.175 с (1951).
 
[3] Жирнов Н. И.,К от А.А. Непрерывная из котлов лысого давления. Электрические Cтанции, 2: 23-27 (1965).
[4] Марголова Т. Х. Реконструкция котлов леффлева  для перевода их на ступенчатое испарение. Тр. Ин-та / МЭИ, Вып, 25: 133-143 (1955).
[5] Горбуров В. И., Эорин  В. М., Хритонов, Ю.  В., О контроле водного режима парогенерирующих устройств. Теплоэнергетика, 7, 25-0 (1994).
[6] Сиряпина Л. А., Маргулова Т. Х., Повышение эффективности продувки  парогенераторов АЭС с ВВЭР. Теплоэнергетика. 6, 59-60 (1984).
[8] Gorburov V. I.  Kutdyusov , Yu. F., Bud’koa I. O., Makartseva A. N., Ulanova A. V., Rusakovaa M. V. , Anurkina R. P. , Sal’nikovb A. A. ,. Zhukovb A. G Beklemyshevb , E. I. Belyaevb A. N. , Trunovc N. B., and Kharchenkoc S. A., Distribution of Impurities in Steam_Generating Equipment with Estimating the Efficiency of Their Removal during the Power Unit Shutdown Process, Atomic Energy, 108(2), (2010).
[9] Гуцев Д. Ф., Козов Ю. В., Некрасов А. В., Титов В. Ф., Тараконов Г. А., О концентрации растворимых примесей в водяном объеме парогенератора ПГВ-1000. Теплоэнергетика, 12: 62-63 (1987).
[10] Слтников А. Ф.  Эффективность продувки парогенераторов ПГВ-1000. Теплоэнергетика, 66-67 (1988).
[11] Козлов Ю. В., Румянцев Л.К., Свистонов П. Е., Севастьянов, В. П. И др., Распределение растворимых примесей  питательной воды в водяном объеме парогенератора ПГВ-1000 Электрические Cтанции., 2: 33-37 (1992).
[12] Козлов Ю. В.,Свистонов П. Е., Траканов Г. А. И др., Исследование распределения
солей в водяном объеме парогенераторов ПГВ-1000М с модернизированными системами раздачи питательной воды и продувки. Электрические Cтанции, 9: 30-32 (1991).
[13] Gorburov V.I., Zorin V.M., Khritonov U.V. Distribution Soluble Impurities in Water Volume of the Steam Generating Equipment, Vestnik MPEI, 3: 41-50 (1996).
[14] Gorburov V.I. Zorin  V.M., Doctors, Kaverznev M.M., Khaaneki M., Engineers MPEI On the Evaporation in Steam Generating Plants, Thermal Engineering, 3: 55-58 (1997).
]15[ خانکی، منصور؛ ارایه یک مدل دوبعدی جهت توزیع ناخالصی محلول در مولد بخار PGV-1000،
نشریه شیمی و مهندسی شیمی ایران، (4)26: 81 تا 92 (1386).
[16] Jahanfarnia G., Tashakor S., Karkhi N., Abrishami A., New Multistage Evaporation Plan in PGV-1000 Steam Generators, Annals of Nuclear Energy, 54: 43-46 (2013).
[17] Jameel-Ur-Rehman Khan,M Yaqub, Syed M. Zubair, Performance Characteristics of Counter Flow Wet Cooling Towers, Energy Conversion and Management, 44(13): 2073-2091 (2003).
 
[18] Johannes C. Kloppers, Detlev G. Kroger, Loss Coefficient Correlation for Wet-Cooling Tower Fills, Applied Thetrmal Engineering, 23(17): 2201-2211 (2003).
[19] Rafat Al-Waked, Masud Behnia, CFD Simulation of Wet Cooling Towers, Applied Thermal Engineering, 26(4): 382-395 (2006).
[20] Williamson N., Armfiled S., Behnia M., Numerical Simulation of Flow in a Natural Draft Wet Cooling Tower - The Effect of Radial Thermofluid Fields, Applied Thermal EEngineering, 28(2-3): 178-189 (2008).
]21[ جعفر کاظمی، فرزاد؛ آهنگری، علیرضا؛ رحیمی، بیژن؛ تحلیل انتقال حرارت و جرم در یک برج خنک‌کن باز، علوم کاربردی و محاسباتی در مکانیک (دانشکده مهندسی) (1)21، 59 تا 74 (1388).
[25] Ming Gao, Feng-zhong Sun, Kai Wang, Yue-tao Shi, Yuan=bin Zhao, , Experimental Research of Heat Transfer Performance on Natural Draft Counter Flow Wet Cooling Tower under Cross-Wind Conditions, International Journal of Thermal Sciences, 47(7): 935-941 (2008).
[26] Lemouri M., Boumaza M., Experimental Investigation of the Performance Characteristics of a Counterflow Wet Cooling Tower, International Journal of Thermal Sciences, 48(10): 2049-2056 (2010).
[27] Wei-Ye Zheng, Dong-Sheng Zhu, Guo-YYan Zhou, Jia-Fei Wu, Yun-Yi Shi, Thermal Performance Analysis of Closed Wet Cooling Towers under Both Unsaturated and Supersaturated Conditions, Inernational Journal of Heat and Mass Transfer, 55(25-26): 7803-7811 (2012).
[28] Thirapong Muangnoi, Wanchai Asvapoositkul, Somchai Wongwises, Effect of Inlet Relative Humidity and Inlet Temperature on the Performance of Counterflow Wet Cooling Tower Based on Exergy Analysis,, Energy Conversion and Management, 49(10):  2795-2800 (2008).
[29] Papaefthimiou V.D., Rogdakis E.D., Koronaki I.P., Zannis T.C., Thermodynamic Study of the Effects of Ambient Air Conditions on the Thermal Performance Characteristics of a Closed Wet Cooling Tower, Applied Thermal Engineering, 33-34: 199-207 (2012).