Selection of Flotation reagents for Separation of Pyrolusite from Calcite

Document Type : Research Article


Department of Mining and Metallurgical Eng., Amirkabir University of Technology, Tehran, I.R. IRAN


The flotation behavior of pyrolusite and calcite was investigated using oleic acid as an anionic collector and dodecylamine as a cationic collector. The results showed that using oleic acid the maximum flotation recovery of pyrolusite occurs at pH=9 due to the chemisorptions of oleate ions, while in the cationic flotation the physisorption of dodecylamine results in a maxima at pH=8. It was found that in the anionic flotation, copper sulfate (CuSO4.5H2O) acts as pyrolusite activator and calcite depressant agent. The best results were obtained using 1000 g/t copper sulfate in the presence of 10-4 M oleic acid at pH=8. At these conditions the flotation recovery of pyrolusite and calcite are 83.6% and 38%, respectively. In the cationic flotation, sodium carbonate and calcium chloride depress the calcite flotation significantly. Using 10-4 M sodium carbonate without a significant decrease in pyrolusite floatability the calcite flotation recovery reduces to 13.7 % at a pH of 7.5. At this pH, the use of 5×10-4 M calcium chloride with a slight decrease in pyrolusite floatability decreases the calcite flotation recovery from 57.2% to 10.8%. Thus, the cationic flotation using sodium carbonate as a depressant agent for calcite is suggested for separation of pyrolusite from calcite.


Main Subjects

[1] مهدیلو، اکبر؛ مهدی ایران‌نژاد، مهدی؛ بازدید، بهروز؛  بررسی جدایش پیرولوزیت از کلسیت به روش فلوتاسیون آنیونی،  نشریه علوم مهندسی و جداسازی، (5) 1: 81-69 (1392).
[2] سلمانی‌نوری، امید؛ ایران‌نژاد، مهدی؛ مهدیلو، اکبر؛ بررسی اثر میکروویو بر روی خواص فیزیکوشیمیایی سطح ایلمنیت، نشریه شیمی و مهندسی شیمی ایران، (2) 33: 11-19 (1393).
[3] Abeidu  A.M., The Feasibility of Activation of Manganese Minerals Flotation, Trans. JIM, 14: 45-49 (1972).
[4] Fuerstenau M.C., Han  K.N.,  Miller J.D., Flotation Behavior of Chromium and Manganese Minerals, In: "Proceedings of the Arbiter Symposium, Advances in Mineral Processing", SME/AIME: 289-307 (1986).
[5] Fuerstenau D.W., Shibata J., On Using Electrokinetics to Interpret the Flotation and Interfacial Behavior of Manganese Dioxide, Int. J. Miner. Process, 57: 205-217 (1999).
[6] Ying Z., Yuhua W., Shiliang L., Flotation Separation of Calcareous Minerals Using Didodecyldimethylammonium Chloride as A Collector, International Journal of Mining Science and Technology, 22: 285–288 (2012).
[7] Hao J., Long-hua X., Yue-hua H., Dian-zuo W., Chang-kai L., Wei M., Xing-jie W., Flotation and Adsorption of Quaternary Ammonium Cationic Collectors on Diaspore and Kaolinite, Trans. Nonferrous Met. Soc. China, 21: 2528-2534 (2011).
[8]  رضائی، ب؛ "فلوتاسیون"،  انتشارات دانشگاه هرمزگان، ص. 85-84 (1375).
[9] Shi Q., Zhang G., Feng Q., Ou L., Lu Y., Effect of the Lattice Ions on the Calcite Flotation in Presence of  Zn(II), Minerals Engineering, 40: 24-29 (2013).
[10] Shi Q., Feng Q., Zhang G., Deng H., A Novel Method to Improve Depressants Actions on Calcite Flotation, Minerals Engineering, 55: 186–189 (2014).
[11] Mehdilo A., Zarei H., Irannajad M., Arjmandfar H., Flotation of Zinc Oxide Ores by Cationic and Mixed Collectors, Minerals Engineering, 36-38: 331-334 (2012).
[12] موریس فورستینو، جان میلر، مارتین کان(نویسندگان)، عبداللهی، م (مترجم)؛ "شیمی فلوتاسیون"، انتشارات جهاد دانشگاهی واحد تربیت مدرس، ص. 104-106(1382).
[13] Pavia D., Lampman G., Kriz G., Vyvyan J., “Introduction to Spectroscopy”, Department of Chemistry, Western Washington University (2009).
[15] Peck A. S., Raby L. H., Wadsworth M. E., An Infrared Study of the Flotation of Hematite with Oleic Acid and Sodium Oleate, Transactions of the American Institute of Mining, 235: 301-307 (1966).
[16] Prakash S., Das B., Mohanty J. K., Venugopal R., The Recovery of Fine Mineral from Quartz and Corundum Mixtures Using Selective Magnetic Coating, International Journal of Mineral Processing, 57: 87-103 (1999).
[17] Yousefi T., Nozad Golikand A., Mashhadizadeh M.H., Aghazadeh M., Template-Free Synthesis of MnO2 Nanowires with Secondary Flower Like Structure: Characterization and Supercapacitor Behavior Studies, Current Applied Physics, 12: 193-198 (2012).