Synthesis, Growth Mechanism, and Applications of Titania/Titanate Nanotubes

Document Type : Review Article

Author

Research Institute of Petroleum Industry (RIPI), P. O. Box 18754-4163 Tehran, I.R. IRAN

Abstract

The synthesis methods for titania/ titanate nanotubes can be split into two categories: template and non-templated procedures. The templates can be classified into positive and negative (include: oregano gelator, macroporous alumina membranes, carbon nanotubes, surfactant) that synthesized nanotubes with diameters > 50 nm. The non-templating methods include alkaline hydrothermal, anodization of titanium in fluoride bathing, seeded growth. The key to developing and exploiting new nanostructured materials lies in an improved knowledge of how synthesis conditions affect properties of nanostructured materials in order to tailor materials to specific needs, In particular, a knowledge of the mechanism of nanostructure formation is very important. In this paper, synthesis methods, microstructure, mechanism of formation and growth and their advantages and disadvantages for these nanotube reported by researchers are reviewed. The nanotube morphology, the highly surface area, and pore volume, render titania/titanate nanotubes promoting materials for many applications in different fields which include energy conversion and storage, catalysis, electro catalysis, photo catalysis, magnetic materials, drug delivery, bio-applications, composites, surface finishing, tribological coatings.

Keywords

Main Subjects


[1] Li Y.D., Li X.L., He R.R., Zhu J., Deng, Z.X., Artificial Lamellar Mesostructures to WS2 Nanotubes, J. Am. Chem. Soc., 124: 11411- 1416 (2002).
[2] Muhr H.J., Krumeich F., Schönholzer U.P., Bieri F., Niederberger M., Gauckler L.J., Nesper, R., Vanadium Oxide Nanotubes - A New Flexible Vanadate Nanophase, Adv. Mater., 12: 231- 234 (2000).
[3] Liu Z., Zhang Q., Qin L.C., Reduction in the Electronic Band Gap of Titanium Oxide Nanotubes, Solid State Communications, 141: 168-171 (2007).
[4] Iijima S., Helical Microtubules of Graphitic Carbon, Nat., 354: 56-58 (1991).
[5] Chopra N.G., Luyken R.J., Cherrey K., Boron Nitride Nanotubes, Science, 269: 966-967 (1995).
[6] Tenne R.,Inorganic Nanoclusters with Fullerene-Like Structure and Nanotubes, Prog. Inorg. Chem., 50: 269-315 (2001).
[7] Nath M., Rao. C.N.R., New Metal Disulfide Nanotubes, J. Am. Chem. Soc., 123: 4841-4842  (2001).
[8] Rao C.N.R., Nath M., Inorganic Nanotubes, Dalton Transactions, 1: 1-24 (2003).
[9] Krumeich F., Muhr H.J., Niederberger M., Bieri F., Schnyder B.,  Nesper R., Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes, J. Am. Chem. Soc., 121: 8324- 8331 (1999).
[10] Fujishima A., Rao T.N., Tryk D.A., Titanium Dioxide Photocatalysis, J. Photochem. Photobio. C, 1: 1- 21(2000).
[11] Asahi R., Taga Y., Mannstadt W., Freeman A.J., Electronic and Optical Properties of Anatase TiO2, Phys. Rev. B, 61: 7459-7465 (2000).
[12] Adachi M., Murata Y., Okada I., Yoshikawa S., Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells, J. Electrochem. Soc., 150: G488- G 493 (2003).
[13] Oh S.H., Finõnes R.R., Daraio C., Chen L.H., Jin S., Growth of Nano-Scale Hydroxyapatite Using Chemically Treated Titanium Oxide Nanotubes, Biomaterials, 26:4938- 4943 (2005).
[14] Liu S., Chen A., Coadsorption of Horseradish Peroxidase with Thionine on TiO2 Nanotubes for Biosensing, Langmuir, 21: 8409- 8413 (2005).
[15] Jung J.H., Kobayashi H., Van Bommel K.J.C., Shinkai S., Shimizu T., Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template, Chem. Mater, 14:1445-1447 (2002).
[16] Kobayashi S., Hamasaki N., Suzuki M., Kimura M., Shirai H., Hanabusa K., Preparation of  Helical Transition-Metal Oxide Tubes Using Organogelators as Structure-Directing Agents, J. Am. Chem. Soc., 124: 6550-6551 (2002).
[18] Kobayashi S., Hanabusa K., Hamasaki N., Kimura M., Shirai H., Shinkai S., Preparation of TiO2 Hollow-Fibers Using Supramolecular Assemblies, Chem. Mater., 12: 1523-1525 (2000).
[19] Liu S.M., Gan L.M., Liu L.H., Zhang W.D., Zeng H.C.,Synthesis of Single-Crystalline TiO2 Nanotubes, Chem. Mater., 14: 1391-1397 (2002).
[20] Lakshmi B.B., Dorhout P.K., Martin C.R., Sol-Gel Template Synthesis of Semiconductor Nanostructures, Chem. Mater., 9: 857-862 (1997).
[21] Sander M.S., Côté M.J., Gu W., Kile B.M., Tripp C.P., Template-Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well-Controlled Dimensions on Substrates, Adv. Mater., 16: 2052-2057 (2004).
[22] Cochran R.E., Shyue J.J., Padture N.P., Template-Based, Near-Ambient Synthesis of Crystalline Metal-Oxide Nanotubes, Nanowires and Coaxial Nanotubes, Acta Materialia, 55: 3007-3014 (2007).
[23] Masuda H., Satoh M., Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask, J. Appl. Phys., 35: 126- 129 (1996).
[25] Michailowski A., Almawlawi D., Cheng G., Moskovits M., Highly Regular Anatase Nanotubule Arrays Fabricated in Porous Anodic Templates, Chem. Phys. Lett., 349: 1-5 (2001).
[26] Hoyer P., Formation of a Titanium Dioxide Nanotube Array, Langmuir, 12:1411-1413 (1996).
[27] Hoyer P., Semiconductor Nanotube Formation by a Two-Step Template Process, Langmuir, 8: 857-859 (1996).
[28] Seo D.S., Lee J.K., Kim H., Preparation of nanotube-shaped TiO2 Powder, Journal of Crys. Growth, 229: 428- 432 (2001).
[29] Eder D., Motta M.S., Kinloch I.A., Windle A.H., Anatase Nanotubes as Support for Platinum Nanocrystals, Phys. E: Low-dimens. Syst. and Nanostruct, 37: 245-249 (2007).
[30] Harada M., Adachi M., Surfactant-Mediated Fabrication of Silica Nanotubes, Adv. Mater., 12: 839-841 (2000).
[31] Adachi M., Murata Y., Harada M., Yoshikawa S., Formation of Titania Nanotubes with High Photo-Catalytic Activity, Chemistry letters, 8:942- 943 (2000).
[32] Ngamsinlapasathian S., Sakulkhaemaruethai S., Pavasupree S., Kitiyanan A., Sreethawong T., Suzuki Y., Yoshikawa S., Highly Efficient Dye-Sensitized Solar Cell Using Nanocrystalline Titania Containing Nanotube Structure, Journal of Photochemistry andPhotobiology A: Chemistry, 164: 145-151 (2004).
[33] Gao L.D., Le Y., Wang J.X., Chen J.F., Preparation and Characterization of Titania Nanotubes with Mesostructured WallsMaterials Letters, 60: 3882-3886  (2006).
[35] Tian Z.R., Voigt J.A., Liu J., Mckenzie B., Xu H., Large Oriented Arrays and Continuous Films of TiO2-Based Nanotubes, J. Am. Chem. Soc., 125: 12384-12385 (2003).
[36] Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K., Formation of Titanium Oxide Nanotube,Langmuir, 14: 3160-3163 (1998).
[37] Zhang M., Jin Z., Zhang J., Guo X., Yang J., Li W., Wang X., ZhangZ., Effect of Fe/Ir Ratio on the Surface and Catalytic Properties in Citral Hydrogenation on Fe-Ir/TiO2 Catalysts, J. Mol. Catal. A Chem., 217: 203-211 (2003).
[38] Yang J., Jin Z., Wang X., Li W., Zhang J., Zhang S., Guo X., Zhang, Z., Study on Composition, Structure and Formation Process of Nanotube Na2Ti2O4(OH)2, Dalton Trans., 20: 3898 -3901 (2003).
[39] Zhang S., Li W., Jin Z., Yang J., Zhang J., Du Z., Zhang Z., Study on ESR and Inter-Related Properties of Vacumm-Dehydrated Nanotube Titanic Acid, J. Solid State Chem., 177: 1365-1371  (2004).
[41] Akita T., Okumura M., Tanaka K., Ohkuma K., Kohyama M., Koyanagi T., Tsubota S., Haruta M., Transmission Electron Microscopy Observation of the Structure of TiO2 Nanotube and Au/TiO2 Nanotube Catalyst, Surf. Interface Anal., 37: 265- 269 (2005).
[42] Huang C., Zhang K.J., Zhi D., Li X.J., Preparation of Trititanate Nanotube and TEM Observation, J. Inorg. Mater., 21: 547-552 (2006).
[43] Du G.H., Chen Q., Che R.C., Yan Z.Y., Peng L.M., Preparation and Structure Analysis of Titanium Oxide Nanotubes, Appl. Phys. Lett., 79: 3702-3704 (2001).
[44] Chen Q., Du G.H., Zhang S., Peng L.M., The structure of Tritinate Nanotubes, Acta Cryst. B, 58: 587-593 (2002).
[45] Chen Q., Zhou W.Z., Du G.H., Peng L.M., Trititanate Nanotubes Made Via a Single Alkali Treatment, Adv. Mater., 14: 1208- 12011 (2002).
[46] Zhang S., Peng L.M., Chen Q., Du G.H., Dawson G., Zhou W.Z., Formation Mechanism of H2Ti3O7 Nanotubes, Phys. Rev. Lett. 91: 256103-1:4 (2003).
[47] Sun X., LiY., Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes, Chem. Eur. J., 9:2229-2238 (2003).
[48] Yuan Z.Y., Su B.L., Titanium Oxide Nanotubes, Nanofibers and Nanowires, Colloid and Surf. A, 241: 173-83 (2004).
[49] Thorne A., Kruth A., Tunstall D., Irvine J.T.S., ZhouW., Formation, Structure, and Stability of Titanate Nanotubes and Their Proton Conductivity, J. Phys. Chem. B, 109: 5439 (2005).
[50] Nakahira A., Kato W., Isshiki M., Nishio K., Aritani H., Synthesis of Nanotube from a Layered H2Ti4O9·H2O in a Hydrothermal Treatment Using Various Titania Sources, J. Mater. Sci., 39: 4239-4245 (2004).
[51] Ma R., Banda Y., Sasaki T., Nanotubes of Lepidocrocite Titanates, Chem. Phys. Lett., 380:577-582 (2003).
[52] Ma R., Fukuda K., Sasaki T., Osada M., Bando Y., Structure Features of Titanate Nanotubes/Nanobelts Revealed by Raman, X-Ray Absorption Fine Structure and Electron Diffraction Characterizations, J. Phys. Chem. B, 109: 6210-6214 (2005).
[53] Wang Y.Q., Hu G.Q., Duan X.F., Sun H.L., Xue Q.K., Microstructure and Formation Mechanism of Titanim Dioxide Nanotubes, Chem. Phys. Lett., 365: 427-431 (2002).
[55] Perry R., “Perry`s Chemical Engineers`Handbook”, 7th ed., McGraw-Hill Book Co., New York, (1997).
[57] Safaei M., Sarraf-Mamoory R., Rashidzadeh M., The Interactive Effect of Agitation Condition and Titania Particle Size in Hydrothermal Synthesis of Titanate Nanostructures, J. of Nanoparticle Res., 12: 2723-2728 (2010).
[58] Safaei M., Sarraf-Mamoory R., Rashidzadeh M., Manteghian M., “A Plackett–Burman Design in Hydrothermal Synthesis of TiO2-Derived Nanotubes, J. of Porous Mater., 17:719-726 (2010).
[59] Safaei M., Sarraf-Mamoory R., Rashidzadeh M., Manteghian, M., Synthesis and Characterization of One Dimensional Titanate Nanostructures Via an Alkaline Hydrothermal Method of a Low Surface Area TiO2-Anatase, J. of Ceram. Processing Res., 11: 277-280 (2010).
[60] Safaei M., Sarraf-Mamoory R., Rashidzadeh M., Manteghian M., Experimental Design for Determination of Effective Parameters in Hydrothermal Synthesis of TiO2-Derived Nanotubes, Physica Status Solidi (C), 7: 2727-2730 (2010).
[61] Safaei M., Sarraf-Mamoory R., Rashidzadeh M., Manteghian M., Experimental Design for Determination of Effective Parameters in Hydrothermal Synthesis of TiO2-Derived Nanotubes, "Trends in Nanotechnology", Barcelona, Spain (2009).
[62] Safaei M., Sarraf-Mamoory R., Rashidzadeh M., Manteghian M., Synthesis and Characterization of TiO2-Derived Nanotubes Via a Hydrothermal Method, The 6th "International Chemical Engineering Congress & Exhibition", Kish Island, I.R. Iran (2009).
[63] Safaei M., Sarraf-Mamoory R., Rashidzadeh M., Parameters Modeling for Hydrothermal Synthesis of TiO2-Derived Nanotubes Using Response Surface Methodology, "International Conference on Nanotechnology: Fundamentals and Applications", Ottawa, Canada.
[64] Bockris J.O.M., “An Introduction to Electrochemical Science”, London, Wykeham, (1974).
[65] Gong D., Grimes C.A., Varghese O.K., Chen Z., Hu W., Dickey E.C., Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation, J. Mater. Res., 16: 3331-3334 (2001).
[66] Xie Y., Zhou L., Huang H., Bioelectrocatalytic Application of Titania Nanotube Array for Molecule Detection, Biosensors & Bioelectronics, 22: 2812-2818 (2007).
[68] Paulose M., Mor G.K., Varghese O.K., Shanka, K., Grimes C.A., Visible Light Photoelectrochemical and Water-Photoelectrolysis Properties of Titania Nanotube Arrays,
J. of Photo Chemistry and Photobiology A, 128: 8-15 (2006).
[69] Mor G.K., Varghese O.K., Paulose M., Shankar K., Grimes C.A., A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications, Sol. Energy Mater. Sol. Cells, 90: 2011- 2075 (2006).
[70] Ruan C., Paulose M., Varghese O.K., Mor G.K., GrimesC.A., Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte, J. phys. Chem. B, 109: 15757-15759 (2005).
[71] Thompson G.E., Furnacneaux R.C., Wood G.C., Richardson J.A., and Goode J.S.,Nucleation and Growth of Porous Anodic Films on Aluminium, Nature, 272: 433-435 (1978).
[72] Xie Y., Zhou L.M., Huang H., Enhanced Photoelectrochemical Current Response of Titania Nanotube Array, Mater. Lett. 60: 3558-3560 (2006).
[73] Cheng F., Tao Z., Liang J., Chen,Template-Directed Materials for Rechargeable Lithium-Ion Batteries, J. Chem. Mater., 20: 667-681 (2008).
[74] Sato Y., Koizumi M., Miyao T., Naito S., The CO–H2 and CO–H2O Reactions Over TiO2 Nanotubes Filled with Pt Metal Nanoparticles, Catal. Today, 111: 164-170 (2006).
[75] Qu J., Zhang X., Wang Y., Xie C., Electrochemical Reduction of CO2 on RuO2/TiO2 Nanotubes Composite Modified Pt Electrode, Electrochim. Acta, 50: 3576-3580 (2005).
[76] Huang C., Liu X., Kong L., Lan W., Su Q., Wang Y., The Structural and Magnetic Properties of Co-Doped Titanate Nanotubes Synthesized under Hydrothermal Conditions,Appl. Phys. A, 87:781-786 (2007).
[77] Wu D., Chen Y., Liu J., Zhao X., Li A., Ming N., Co-Doped Titanate Nanotubes, Appl. Phys. Lett., 87:112501- 112503 (2005).
[78] Byrne M.T., McCarthy J.E., Bent M., Blake R., Gun'ko Y.K., Horvath E., Konya Z., Coleman J.N., Chemical Functionalisation of Titania Nanotubes and Their Utilisation for the Fabrication of Reinforced Polystyrene Composites, J. Mater. Chem., 17: 2351-2358 (2007).
[79] Song H.J., Zhang Z.Z., Men X.H., Tribological Behavior of Polyurethane-Based Composite Coating Reinforced with TiO2 Nanotubes, Eur. Polym. J., 44: 1012- 1022 (2008).
[80] Moghimi S.M., Hunter A.C., Murray J.C., Long-Circulating and Target-Specific Nanoparticles: Theory to Practice, Pharmacol. Rev., 53: 283-318 (2001).
[81] Parak W.J., Gerion D., Pellegrino T., Zanchet D., Micheel C., Williams S.C., Boudreau R.,
Le Gros M.A., Larabell C.A., Alivisatos A.P., Biological Applications of Colloidal Nanocrystals, Nanotechnology, 14:R15-R27 (2003).