Investigation on Acting Mechanism of Nitrogen Source in Culture on Medium pH and Production of Poly-gamma-glutamate byFlavobacterium sp.

Document Type : Research Article


1 Institute of Biotechnology Science and Technology, Malek Ashtar University of Technology, Tehran, I.R. IRAN

2 Yong Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN


 Poly-Gamma-glutamate, biopolymer polyamide is consisting of units glutamic acid, that due to biodegradability and non-toxicity property as a biological compound can be used in many fields such as medical and pharmaceutical, food, hydrogels, flocculants, moisture absorbers, thickener and drug carriers and anti-corrosion coatings. Therefore, have been done extensive studies to the over efficiency production of the biopolymer. That is why in this study was evaluated the effect of the concentration of nitrogen source as an important nutritional source on the pH and cell growth, then was studied in terms of how and through what mechanism the production of species flavobacterium gamma glutamate made an impact and Finally, in order to optimize the nitrogen source evaluated five different nitrogen source and sodium glutamate with the highest yields


Main Subjects

[2] Ryder C., Byrd M., Wozniak D.J., Role of Polysaccharides in Pseudomonas Aeruginosa Biofilm Development, Current Opinion in Microbiology, 10: 644-648 (2007).
[3] Alemzadeh I., The Study on Microbial Polymers: Pullulan and PHB, Iran. J. Chem. Chem. Eng. (IJCCE), 28(1): 13-21 (2009).
[4] Schneider J., Wendisch V.F., Biotechnological Production of Polyamines by Bacteria: Recent Achievements and Future Perspectives,  Applied Microbiology and Biotechnology, 91: 17-30 (2011).
[5]Adkins J., Pugh S., McKenna R., Nielsen D.R., Engineering Microbial Chemical Factories  to Produce Renewable Biomonomers, Frontiers in Microbiology, 3: 313-    (2012).
[6] Ashiuchi M., Yamamoto T., Kamei T., Pivotal Enzyme in Glutamate Metabolism of Poly-g-Glutamate-Producing Microbes, Life, 3: 181-188 (2013).
[7] Oppermann-Sanio F., Steinbüchel A., Occurrence, Functions and Biosynthesis of Polyamides in Microorganisms and Biotechnological Production, Naturwissenschaften, 89: 11-22 (2002).
[8] Joentgen W., Groth T., Steinbüchel A., Hai T., Oppermann F., Polyaspartic Acid Homopolymers and Copolymers: Biotechnical Production and Use Thereof, US 6180752 B1 (1998).
[10] Oppermann‐Sanio F.B., Steinbüchel A., Cyanophycin, Biopolymers Online, 10.1002/3527 (2003).
[12] Sun K., Kasperski A., Tian Y., Chen L., Modelling of the Corynebacterium Glutamicum Biosynthesis Under Aerobic Fermentation Conditions, Chemical Engineering Science, 66: 4101-4110 (2011).
[13] Zhang H., Zhu J., Zhu X., Cai J., Zhang A., Hong Y., Huang J., Huang L., Xu Z., High-level Exogenous Glutamic Acid-Independent Production of Poly-(γ-glutamic acid) with Organic Acid Addition in A New Isolated Bacillus Subtilis C10, Bioresource Technology, 116: 241-246 (2012).
[14] Ghafari M., Bahrami A., Rasooli I., Arabian D., Ghafari F., Bacterial Exopolymeric Inhibition of Carbon Steel Corrosion, International Biodeterioration & Biodegradation, 80: 29-33 (2013).
]16[ خوانچه زر سیروان, هاشمی نجف آبادی سمیره, محمدیان موسی آبادی جعفر, خلیل زاده رسول, اسفندیار سمانه، بهینه سازی شرایط کشت باکتری اشرشیا کولی برای اصلاح تولید قطعه C-D نوترکیب باکتریورودوپسین، نشریه شیمی و مهندسی شیمی ایران، (2)32: 93 تا 101 (1392).
]17[ خواجوی رامین, مفتاحی امین, جهانگیریان اصفهانی ابراهیم, ستاری مرتضی، سنتز سلولز میکروبی از سویه بومی و بررسی شبکه نانو الیافی به دست آمده از ساکاریدهای گوناگون، نشریه شیمی و مهندسی شیمی ایران، (4 _ 3) 31 : 79 تا 93 (1391).
[18] Osman M., Eid M., Khattab O., Abd-El All S., El-Hallouty S., Mahmoud D., Optimization and Spectroscopic Characterization of the Biosynthesized Silver/Chitosan Nanocomposite from Aspergillus deflectus and Penicillium Pinophilum, Journal of Chemical, Biological and Physical Sciences (JCBPS), 5: 2643-2655 (2015).
[19] Li X., Gou X., Long D., Ji Z., Hu L., Xu D., Liu J., Chen Sh., Physiological and Metabolic Analysis of Nitrate Reduction on Poly-Gamma-Glutamic Acid Synthesis in Bacillus Licheniformis WX-02, Archives of microbiology, 196: 791-799 (2014).
[20] Mohajer D., Tayebee R., Influence of Nitrogen Bases on Epoxidation of Cyclooctene with Sodium Periodate Catalysed by Manganese (III) Porphyrins, Iran. J. Chem. Chem Eng. (IJCCE), 18(1): 27-29 (1999).
[21] Kumar R., Vikramachakravarthi D., Pal P., Production and Purification of Glutamic Acid: A Critical Review Towards Process Intensification, Chemical Engineering and Processing: Process Intensification, 81: 59-71 (2014).
[22] Hosseini S.A., Yaghmaei S., Mousavi S.M., Jadidi A.R., Biodesulfurization of Dibenzothiophene by a Newly Isolated Thermophilic Bacteria Strain, Iran. J. Chem. Chem. Eng. (IJCCE), 25(3): 67-71 (2006).
[23] Kamali M., Ghorashi S.A.A., Asadollahi M.A., Controllable Synthesis of Silver Nanoparticles Using Citrate as Complexing Agent: Characterization of Nanopartciles and Effect of pH on Size and Crystallinity, Iran. J. Chem. Chem. Eng. (IJCCE), 31(4): 21-29 (2012).
[24] Cromwick A.M., Birrer G.A., Gross R.A., Effects of pH and Aeration on γ‐poly (Glutamic Acid) Formation by Bacillus Licheniformis in Controlled Batch Fermentor Cultures, Biotechnology and Bioengineering, 50: 222-227 (1996).
[25] Wu Q., Xu H., Ying H., Ouyang P., Kinetic Analysis and pH-Shift Control Strategy for Poly (γ-glutamic acid) Production with Bacillus Subtilis CGMCC 0833, Biochemical Engineering Journal, 50: 24-28 (2010).
[26] Shoja A.S., Khalilzadeh R., Sanaei H.R., "Optimizing of SCP Production from Sugar Beet Stillage Using Isolated Yeast," (1998).
[27] Mitsunaga H., Meissner L., Palmen T., Bamba T., Büchs J., Fukusaki E., Metabolome Analysis Reveals the Effect of Carbon Catabolite Control on the Poly (γ-glutamic acid) Biosynthesis of Bacillus Licheniformis ATCC 9945, Journal of Bioscience and Bioengineering, 121(4):  413-419 (2016).
[28] Zhang D., Xu Z., Xu H., Feng X., Li S., Cai H., Wei Y., Ouyang P., Improvement of Poly (γ-glutamic acid) Biosynthesis and Quantitative Metabolic Flux Analysis of a Two-Stage Strategy for Agitation Speed Control in the Culture of Bacillus Subtilis NX-2, Biotechnology and Bioprocess Engineering, 16: 1144-1151 (2011).
[29] Shi F., Xu Z., Cen P., Optimization of γ-Polyglutamic Acid Production by Bacillus Subtilis ZJU-7 Using a Surface-Response Methodology, Biotechnology and Bioprocess Engineering, 11: 251-257 (2006).
[30] Ye-wei Z., Xue-tuan W., Zhong-bo H., Ming-fang L., Lin X., Hui-zhou L., Optimization of γ-Polyglutamic Acid Production by Bacillus licheniformis P-104, The Chinese Journal of Process Engineering, 2: 020 (2012).
[31] Yokoi H., Natsuda O., Hirose J., Hayashi S., Takasaki Y., Characteristics of a Biopolymer Flocculant Produced by Bacillus sp. PY-90, Journal of Fermentation and Bioengineering, 79: 378-380 (1995).
[32] Yan S., Yao H., Chen Z., Zeng S., Xi X., Wang Y., He N., Li Q., Poly‐γ‐glutamic Acid Produced from Bacillus licheniformis CGMCC 2876 as a Potential Substitute for Polyacrylamide in the Sugarcane Industry, Biotechnology Progress, (2015).
[33] Gao C., Wang Z., Su T., Zhang J., Yang X., Optimisation of Exopolysaccharide Production by Gomphidius Rutilus and Its Antioxidant Activities in Vitro, Carbohydrate Polymers, 87:2299-2305 (2012).
[34] Liu W., Wang K., Li B., Yuan H., Yang J., Production and Characterization of an Intracellular Bioflocculant by Chryseobacterium daeguense W6 Cultured in Low Nutrition Medium, Bioresource technology, 101: 1044-1048 (2010).