Investigation of Electro and Chemical Coagulation Processes for Marine Microalgae Separation

Document Type : Research Article

Authors

1 Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, P.O. Box 14155-6135 Tehran, I.R. IRAN

2 Catalysis and Nanostructured Materials Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, I.R. IRAN

Abstract

In this study, different methods of separating of the microalgae from the culture medium as one of the most important and expensive steps in achieving commercial production of Biodiesel from Microalgae was investigated. Electro Coagulation-Flotation (ECF) was preferred among these methods due to its process simplicity and capability to scale up. The effect of three parameters, i.e., initial pH, electric current density and duration was investigated on microalgae separation efficiency and operating costs. It was revealed that duration was the most effective parameter on the both microalgae separation efficiency and the operational costs, wherein high efficiency was resulted in long duration. On the other hand, the high amount of electric current density caused high coagulation, flotation rates, and also consumed high power. Although the pH of solution had a little impact on operating cost compared with the duration and current density, the natural condition (pH = 6) is recommended. Microalgae separationefficiency was obtained 96.8% in optimal point; wherein current density equals 1.6 mA / cm2 for 17.65 min and no need to pH adjustment. Additionally, the performance of Chemical Coagulation (CC) as an alternative to the ECF in microalgae separation was evaluated. The results demonstrate that the optimal coagulant concentration and pH are respectively equal to 450 mg /L and 8 with the separation efficiency of 86%. Comparison of performance of these two methods indicate that ECF is a promising method of microalgae harvesting in large scale  due to its more flexibility and lower cost and also less sensitivity to pH changes.

Keywords

Main Subjects


[1] Farrell A. E, Plevin R.J, Turner B.T, Jones A.D, O'Hare M, Kammen D. M., EthanolCcan Contribute to  Energy and Environmental Goals, Science, 311: 506-508 (2006).
[2] Khan S.A., Rashmi Hussain M.Z., Prasad S., Banerjee UC, Prospects of Biodiesel Production from Microalgae in India, Renew. Sust. Energ. Rev., 13: 2361–2372(2009).
[3] Rodolfi L., Zitelli G.C., Bassi N., Padovani G., Biondi N., Bonini G., Tredici MR Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor, Biotech. Bioeng., 102:100–112(2009).
[4] Campbell P.K., Beer T., Batten D, Life Cycle Assessment of Biodiesel Production from Microalgae in Ponds, Bioresour Technol, 102:50–56(2011).
[5] Chen P., Min m., Chen y., Wang l., Li y., Chen Q., Review of the Biological and Engineering Aspects of Algae to Fuels Approach, International Journal of Agriculture and Biological Engineering, 2 (4):1-30(2009).
[6] Schenk P.M., Skye R., Thomas-Hall, Stephens E., Marx U.C., Mussgnug J.H., Posten C., Kruse O., Hankamer B., Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production, Bioenergy Res., 1:20–43(2008).
[7] Uduman, Nyomi, Ying Qi, Michael K. Danquah, Gareth M. Forde, Andrew Hoadley, Dewatering of Microalgal Cultures: A Major Bottleneck to Algae-Based Fuels, Journal of Renewable and Sustainable Energy, 2(1):012701 (2010).
[8] Tenney M.W., Echelberger J., W.F. S., R.G., P., J.L., Algal  Flocculation with  Synthetic Organic  Polyelectrolytes, Applied microbiology, 18(6), 965 - 971 (1969).  
[9] Bernhardt H., Clasen J., Flocculation of Micro-Organisms., Journal of Water Supply: Research and Technology - Aqua, 40(2):76 - 87(1991).  
[10] Adam J. Dassey & Chandra S. Theegala, Reducing Electrocoagulation Harvesting Costs for Practical Microalgal Biodiesel Production, Environmental Technology Journal, 35(6): 691–697 (2013).
[11] Danquah M.K., Ang L., Uduman N., Moheimani N., Fordea G.M., Dewatering of Microalgal Culture for Biodiesel Production: Exploring Polymer Flocculation and Tangential Flow Filtration, J Chem Technol Biot., 84:1078–1083(2009).
[12] Uduman N., Qi Y., Danquah M.K., Forde G.M., Hoadley A., Dewatering of Microalgal Cultures: A Major Bottleneck to Algae-Based Fuels, J. Renew. Sustain. Energy., 2:012701(2010).
[14] Choi S.K., Lee J.Y., Kwon D.Y., Cho K.J., Settling Characteristics of Problem Algae in the Water Treatment Process, Water Sci. Technol., 53:113–119(2006).
[15] Edzwald J.K., Algae, Bubbles, Coagulants, and Dissolved Air Flotation, Water Sci. Technol., 27:67–81(1993).
[16] Schenk P.M., Skye R., Thomas-Hall, Stephens E., Marx U.C., Mussgnug J.H., Posten C., Kruse O., Hankamer B., Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production, Bioenergy Res., 1:20–43(2008).
[17] Knuckey R.M., Brown M.R., Robert R., Frampton DMF Production of Microalgal concentrates by Flocculation and Their Assessment as Aquaculture Feeds, Aquacult Eng., 35:300–313(2006).
[18] Uduman N., Qi Y., Danquah M.K., Forde G.M., Hoadley A., Dewatering of Microalgal Cultures: A Major Bottleneck to Algae-Based Fuels, J. Renew Sustain Energy, 2:012701(2010).
[19] Bilanovic D., Shelef G., Sukenik A., Flocculation of Microalgae with Cationic Polymers Effects of Medium Salinity, Biomass, 17:65–76(1988).
[20] Molina Grima M.E., Belarbi E.H., Fernandez F.G.A., Medina A.R., Chisti Y., Recovery of Microalgal Biomass and Metabolites: Process Options and Economics, Biotechnol Adv. 20:491–515(2003).
[21] Mollah M.Y.A., Morkovsky P., Gomes J.A.G., Kesmez M., Parga J., Cocke DL, Fundamentals, Present and Future Perspectives of Electrocoagulation, J. Hazard Mater, 114:199–210(2004).
[22] Gao S., Yang J., Tian J., Ma F., Tu G., Du M, Electro-Coagulation–Flotation Process for Algae Removal, J. Hazard Mater, 177:336–343(2010).
[23] Gao S., Du M., Tian J., Yang J., Ma F., Nan J., Effects of Chloride Ions on Electrocoagulation–Flotation Process with Aluminum Electrodes for Algae Removal, J. Hazard Mater, 182: 827–834 (2010).
[24] Nanseu-Njiki C.P., Tchamango S.R., Ngom P.C., Darchen A., Ngameni E., Mercury(II) Removal from Water by Electrocoagulation Using Aluminium and Iron Electrodes., Journal of Hazardous Materials, 168: 1430-1436 (2009).
[26] Vasudevan S., Lakshmi J., Sozhan G., Effects of Alternating and Direct Current in Electrocoagulation Process on the Removal of Cadmium from Water, Journal of Hazardous Materials, 192:26-34(2011).
[27] Akbal F., Camc S., Copper, Chromium and Nickel Removal from Metal Plating Wastewater, Desalination, 269:214-222 (2011).
[28] Martínez-Villafane J.F., Montero-Ocampo C., García-Lara A.M, Energy and Electrode Consumption Analysis of Electrocoagulation for the Removal of Arsenic from Underground Water, Journal of Hazardous Materials, 172:1617-1622(2009).
[29] Behbahani.M, Alavi Moghadam M.R., Arami M.,Techno-Economical Evaluation Offluoride Removal by Electrocoagulation Process: Optimization Through Response Surface Methodology, Desalination, 271:209-218(2011).
[30] Balasubramanian N. et al., Removal of Arsenic from Aqueous Solution Using Electrocoagulation, Journal of Hazardous Materials, 167: 966-969(2009).
[31] Tir M., Moulai-Mostefa N., Optimization of Oil Removal from Oily Wastewater by Electrocoagulation Using Response Surface Method, Jornal of Hazardous Materials, 158:107-115(2008).
[32] Nanseu-Njiki, C. P., Tchamango, S. R., Ngom, P. C., Darchen, A., & Ngameni, E. Mercury(II) Removal from Water by Electrocoagulation Using Aluminium, Journal of Hazardous Materials, 168:1430-1436(2009).
[33] Escobar C., Soto-Salazar C., Toral M., Optimization of the Electrocoagulation Process for the Removal of Copper, Lead and Cadmium in Natural Waters and Simulated Wastewater, Ines., Journal of Environmental Management, 81: 384-391(2006).
[34] Ferreira A. de M., Marchesiello M., Thivel P.-X., Removal of Copper, Zinc and Nickel Present in Natural Water Containing Ca2+ and HCO-, Separation and Purification Technology, 107:109-117 (2013).
[35] Sadri Moghaddam S., Alavi Moghaddam M.R., Arami M., Coagulation/Flocculation Process for Dye Removal Using Sludge from Water Treatment Plant: Optimization Through Response Surface Methodology, Journal of Hazardous Materials, 175:651-657(2010).
[36] محمدی جوزانی، محمدرضا؛ بهجت، یعقوب؛ شاه­حسینی، شاهرخ؛ قائمی، احد بررسی هیدرودینامیک سانتریفیوژ گازی با استفاده از تحلیل CFD، نشریه شیمی و مهندسی شیمی ایران، (1) 33 :89-101(1393).
[37] ارجمند؛ مهدی، الحسینی؛ سید حسن، سیدین؛ سید هادی، بررسی آزمایشگاهی فرایند پوشش‌دهی پودر سدیم پرکربنات با محلول سدیم سیلیکات در بستر سیال، نشریه شیمی و مهندسی شیمی ایران، (4) 32 : 45-58 (1392).  
[38] Montgomery, Douglas C., Runger, George C. and Hubele, Norma Faris. Engineering Statistics, John Wiley & Sons Inc., USA, (2011).
[39] Myers, Raymond H., Montgomery, Douglas C. and Anderson-Cook, Christine M., Response Surface Methodology, Third Edition, John Wiley & Sons, Hoboken, New Jersey, (2009).
[40] Magharei A, Vahabzadeh F, Sohrabi, Morteza, Rahimi Kashkouli Y, Maleki M. Mixture of Xylose and Glucose Affects Xylitol Production by Pichia guilliermondii: Model Prediction Using Artificial Neural Network, Iranian Journal of Chemistry and Chemical Engineering (IJCCE); 31(1):119-31(2012).
[41] Kumar M., Ponselvan F., Malviya J.R., Srivastava V.C., Mall I.D., Treatment of Bio-Digester Effluent by Electrocoagulation Using Iron Electrodes, Journal of Hazardous Materials, 165:345-352 (2009).
[42] Daneshvar N., Ashassi H., Rakhshaei R., Pretreatment of Brackish Water Using DC-Electrocoagulation- Method and Optimization, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 21(1):13-20(2002).
[43] Zongo I., Maiga A.H., Wéthé J., Valentin G., Leclerc J.P., Paternotte G.,  Lapicque F., Electrocoagulation for the Treatment of Textile Wastewaters with Al or Fe Electrodes: Compared Variations of COD Levels, Turbidity and Absorbance, Journal of Hazardous Materials, 169:70-76(2009).
[44] Nurani Pabmanavhan, Sivarajan, Meenatchisundaram, Treatment of Acid Blue 113 Dye Solution Using Iron Electrocoagulation. Saravanan, Mohan, Sambhamurthy, Clean – Soil, Air, Water, 38: 565-571 (2010).
[45] Gao S., Yang J., Tian J., Ma F., Tu G., Du M., Electro-Coagulation–Flotation Process for Algae Removal, Journal of Hazardous Materials, 177: 336-343 (2010).
[46] Rebhun, M. Lurie., Control of Organic Matter by Coagulation and Floc Separation, Water Sci. Technol., 11: 1-20 (1993).
[47] Gomes J.A., Daida P., Kesmez M., Weir M., Moreno H., Parga J.R., Cocke D.L., Arsenic Removal by Electrocoagulation Using Combined Al–Fe Electrode System and Characterization of Products, Journal of Hazardous Materials, 139: 220-231 (2007)..
[48] Emamjomeh M.M., Sivakumar M., An Empirical Model for Defluoridation by Batch Monopolar Electrocoagulation/Flotation (ECF) Process, Journal of Hazardous Materials, 131:118-125 (2006).
[49] Kobya M., Can O.T., Bayramoglu M., Treatment of Textile Wastewaters by Electro-Coagulation Using Iron and Aluminum Electrodes, Journal of Hazardous Materials, 100: 995-1000 (2003).
[50] Merzouk B., Gourich B., Sekki A., Madani K., Chibane M., Removal Turbidity and Separation of Heavy Metals Using Electrocoagulation–Electroflotation Technique A Case Study, Journal of Hazardous Materials, 164:215-222( 2009).
[51] Stephenson R.J., Duff Sh.J.B., Coagulation and Percipitation of a Mechanical Pulping Effluent-I. Removal of Carbon, Colour and Turbidity, Water research, 30:781-792(1996).