Modeling and Approximate Solution for Separation of Nitrogen and Methane in a Spiral Wound Membrane Module

Document Type : Research Article

Authors

1 Department of Petrochemical Engineering, Amirkabir University of Technology, Mahshahr Campus, Mahshahr, I.R. IRAN

2 Department of Chemical Engineering, Amirkabir University of Technology, Tehran, I.R. IRAN

Abstract

In the present study, modeling of nitrogen and methane separation in a spiral wound membrane module has been performed. For this purpose, some simplifications have been made which although simplified the model and eliminated unnecessary complexities, does not reduced the accuracy and made it as a very useful applicable model. For this purpose, an approximate modeling technique for spiral wound membranes in separating binary gas mixture is used for investigation of effects of increase membrane area and feed specifications (such as flow rate, concentration and pressure) on N2/CH4 separation. The results showed that based on the membrane selectivity, any changes in flow rate, concentration and pressure of feed and membrane surface can cause improvement or decrement in methane recovery and methane concentration in the product flow.On the other hand, it was also found that increase in the membrane surface area, improves methane recovery in the methane selective membranesand decreases in the nitrogen selective membranes. Moreover, by increasing the membrane surface area, methane concentration in product stream decreases while it increases for nitrogen selective membranes. Then, it is necessary to establish a balance between the amount of methane recovery and methane concentration in the product.

Keywords

Main Subjects


 

[1] Tagliabue M., Farrusseng D., Natural Gas Treating by Selective Adsorption: Material Science and Chemical Engineering Interplay, Chem. Eng. J., 155: 553-566 (2009).

[2] Baker R. W., Lokhandwala K., Natural Gas Processing Membranes, Ind. Eng. Chem. Res., 47: 2109-2121 (2008).

[3] Jayaraman A., Clinoptilolites for Nitrogen/Methane Separation, Chem. Eng. Sci., 59, 2407 – 2417, (2004).

]4[ احمد پور علی، شاهسوند اکبر، بررسی روش­های جداسازی نیتروژن از گاز طبیعی پالایشگاه فجر،"دهمین کنگره ملی مهندسی شیمی ایران"، دانشگاه سیستان و بلوچستان، ص 5980-5968 (1384).

[5] Baker R. W., Future Direct of Membrane Gas Separation Technology, In. Eng. Chem. Res., 41: 1393-1411 (2002).

[6] Lokhandwala K.A., Pinnau I., He Z., Amo K.D., Dacosta A.R., Wijmans J.G., Baker R.W., Membrane Separation of Nitrogen from Natural Gas: A Case Study from Membrane Synthesis to Commercial Deployment, J. Membr. Sci., 346: 270-279 (2010).

[7] Lokhandwala K., “Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas", Final Report, Department of Energy Award No. DE-FC26-01NT41225, California, USA, (2007).

[8] Najafpour Gh., Biochemical Technology and Biotechnology, 1st Edition, Elsevier Book Co., Amsterdam, Netherlands, pp. 371 (2007).

]9[ سنایی­پور، حمیدرضا؛ عبادی عموقین، آبتین؛ مقدسی، عبدالرضا؛ کارگری، علی؛ قنبری، داود؛ شیخی مهرآبادی، زهرا؛ قائمی، مجتبی؛ مطالعه خواص جداسازی گاز در غشای آلیاژی پلیمری جدید ABS/PVAc،
نشریه شیمی و مهندسی شیمی ایران
دوره، (2)30: 43-51 (1390).

[10] Savolainen P., “Modeling of Non-Isothermal Vapor Membrane Separation with Thermodynamic Models and Generalized Mass Transfer Equations, Dissertation for Degree of doctor of science, Finland: Lappeenranta University of Technology, (2002).

[11] Qi R., Henson M. A., Approximate Modeling of Spiral-Wound Gas Permeators, J. Membr. Sci., 121: 11-24 (1996).

[12] Qi H., Henson M. A., Modeling of Spiral-Wound Permeators for Multicomponent Gas Separations, In. Eng. Chem. Res., 36: 2320-2331 (1997).

]13[ نیک­آذر، منوچهر؛ خراط، ریاض؛ "کاربرد ریاضیات در مهندسی شیمی"، دانشگاه صنعتی امیرکبیر تهران،
جلد دوم، 114 تا 121 (1387).

[14] Qi R., Henson M. A., Optimal Design of Spiral-Wound Membrane Networks for Gas Separation, J. Membr. Sci., 148: 71-89 (1998).

[15] Tannehill C.C., Raven M., Purvin & Gertz, "Nitrogen Removal Requirements for Natural Gas", Gas Research Institute Topical Report, (1999).


[16] Baker R.W., "Membrane Technology and Applications, 2nd Edition, John Wiley & Sons, Ltd, Chichester, England, (2004).

[17] Javid A., Membrane for Solubility-Based Gas Separation Application, Chem. Eng. J., 112: 219-226 (2005).

[18] Pathare R., Agrawal R., Design of Membrane Cascades for Gas Separation, J. Membr. Sci., 364: 263-277 (2010).

[1] Tagliabue M., Farrusseng D., Natural Gas Treating by Selective Adsorption: Material Science and Chemical Engineering Interplay, Chem. Eng. J., 155: 553-566 (2009).
[2] Baker R. W., Lokhandwala K., Natural Gas Processing Membranes, Ind. Eng. Chem. Res., 47: 2109-2121 (2008).
[3] Jayaraman A., Clinoptilolites for Nitrogen/Methane Separation, Chem. Eng. Sci., 59, 2407 – 2417, (2004).
[4] احمد پور علی، شاهسوند اکبر، بررسی روش­های جداسازی نیتروژن از گاز طبیعی پالایشگاه فجر، "دهمین کنگره ملی مهندسی شیمی ایران"، دانشگاه سیستان و بلوچستان، ص 5980-5968 (1384).
[5] Baker R. W., Future Direct of Membrane Gas Separation Technology, In. Eng. Chem. Res., 41: 1393-1411 (2002).
[6] Lokhandwala K.A., Pinnau I., He Z., Amo K.D., Dacosta A.R., Wijmans J.G., Baker R.W., Membrane Separation of Nitrogen from Natural Gas: A Case Study from Membrane Synthesis to Commercial Deployment, J. Membr. Sci., 346: 270-279 (2010).
[7] Lokhandwala K., “Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas", Final Report, Department of Energy Award No. DE-FC26-01NT41225, California, USA, (2007).
[8] Najafpour Gh., Biochemical Technology and Biotechnology, 1st Edition, Elsevier Book Co., Amsterdam, Netherlands, pp. 371 (2007).
]9[ سنایی­پور، حمیدرضا؛ عبادی عموقین، آبتین؛ مقدسی، عبدالرضا؛ کارگری، علی؛ قنبری، داود؛ شیخی مهرآبادی، زهرا؛ قائمی، مجتبی؛ مطالعه خواص جداسازی گاز در غشای آلیاژی پلیمری جدید ABS/PVAc، نشریه شیمی و مهندسی شیمی ایران دوره، (2)30: 43-51 (1390).
[10] Savolainen P., “Modeling of Non-Isothermal Vapor Membrane Separation with Thermodynamic Models and Generalized Mass Transfer Equations, Dissertation for Degree of doctor of science, Finland: Lappeenranta University of Technology, (2002).
[11] Qi R., Henson M. A., Approximate Modeling of Spiral-Wound Gas Permeators, J. Membr. Sci., 121: 11-24 (1996).
[12] Qi H., Henson M. A., Modeling of Spiral-Wound Permeators for Multicomponent Gas Separations, In. Eng. Chem. Res., 36: 2320-2331 (1997).
[13] نیک­آذر، منوچهر؛ خراط، ریاض؛ "کاربرد ریاضیات در مهندسی شیمی"، دانشگاه صنعتی امیرکبیر تهران، جلد دوم، 114 تا 121 (1387).
[14] Qi R., Henson M. A., Optimal Design of Spiral-Wound Membrane Networks for Gas Separation, J. Membr. Sci., 148: 71-89 (1998).
[15] Tannehill C.C., Raven M., Purvin & Gertz, "Nitrogen Removal Requirements for Natural Gas", Gas Research Institute Topical Report, (1999).
[16] Baker R.W., "Membrane Technology and Applications, 2nd Edition, John Wiley & Sons, Ltd, Chichester, England, (2004).
[17] Javid A., Membrane for Solubility-Based Gas Separation Application, Chem. Eng. J., 112: 219-226 (2005).
[18] Pathare R., Agrawal R., Design of Membrane Cascades for Gas Separation, J. Membr. Sci., 364: 263-277 (2010).