Investigation on the Effect of Surfactant on the Structural and Activity of Nickel Catalyst Supported on Magnesium Oxide in Dry Reforming of Methane

Document Type : Research Note


Catalyst and Advanced Materials Research Laboratory (CAMRL), Chemical Engineering Department, University of Kashan, Kashan, I.R. IRAN


In this paper, three polymeric surfactants (PVA، P123 and PEG) were used for preparation of magnesium oxide with precipitation method. The prepared samples were evaluated by XRD، BET and SEM techniques. The results showed that the surfactant has a positive effect on the surface area and pore size of magnesium oxide. The magnesium oxide prepared by PVA has the highest surface area among the prepared samples. The catalytic results of 10%Ni catalysts supported on MgO prepared by different surfactants in dry reforming of methane revealed that all catalysts have a high catalytic activity and stability and the nickel catalyst supported onmagnesium oxide prepared with P123 has the highest activity in dry reforming of methane.


Main Subjects

[2] بهزاد وافری، حمید رضا کرمی و غلامرضا کریمی، مدل سازی فرایند ریفرمینگ گاز طبیعی با بخار آب  در راکتور غشایی پالادیم-نقره برای تولید هیدروژن خاص، نشریه شیمی و مهندسی شیمی ایران، (3)30 :25 تا 37 (1390).
[3] Meshkani F., Rezaei M., Nano Crystalline MgO Supported Nickel-Based Bimetallic Catalysts for Carbon Dioxide Reforming of Methane, International Journal of Hydrogen Energy, 35: 10295-10301 (2010).
[4] Roghani-Mamaqani H., Haddadi-Asl V., Salami Kalajahi M., in situ Controlled Radical Polymerization: A Review on Synthesis of Well-Defined Nano Composites, Polymer Reviews, 52: 142-188 (2012).
[5] Patel D., Ein-Mozaffari F., Mehrvar M., Using Tomography to Visualize the Continuous-Flow Mixing of Biopolymer Solutions Inside a Stirred Tank Reactor, Chemical Engineering Journal, 239: 257273 (2014).
[6] Khajenoori M., Rezaei M., Meshkani F., Dry reforming over CeO2-Promoted Ni/MgO Nano-Catalyst: Effect of Ni Loading and CH4/CO2 Molar Ratio, Journal of Industrial and Engineering Chemistry, 21: 717-722 (2015).
[7] Osaki T., Horiuchi T., Suzuki K., Mori T., Conversion of Methane and Carbon Dioxide Into Synthesis Gas Over Alumina-Supported Nickel Catalysts, Catal. Lett., 29: 39-48 (1995).
[8] Goff S.P., Wang S.I., Syngas Production by Reforming, Chemical Engineering Progress, 83: 46-53 (1987).
[9] Nielsen J.R., New Aspects of Syngas Production and Use, Catal. Today, 63: 159-164 (2000).
[10] Salami-Kalajahi M., Haddadi-Asl V., Rahimi-Razin S., Behboodi-Sadabad F., Najafi M., Roghani Mamaqani H., A Study on the Properties of PMMA/Silica Nanocomposites Prepared via RAFT Polymerization, Journal of Polymer Research, 19: 1-11 (2012).
[13] Khajenoori M., Rezaei M., Meshkani F., Characterization of CeO2 Promoter of a Nanocrystalline Ni/MgO Catalyst in Dry Reforming of Methane, Chemical Engineering & Technology, 37: 957-963 (2014).
[14] Rezaei M., Khajenoori M., Nematollahi B., Synthesis of High Surface Area Nanocrystalline MgO by Pluronic P123 Triblockcopolymer Surfactant, Powder Technology, 205: 112–116 (2011).
[15] Mohandes F., Davar F., Salavati-Niasari M., Magnesium Oxide Nanocrystals via Thermal Decomposition of Magnesium Oxalate, Journal of Physics and Chemistry of Solids, 71: 1623–1628(2010).
[17] Yan H., Zhang X., Wu J., Wei L., Liu X., Xu B., The Use of CTAB to Improve
the Crystallinity and Dispensability of Ultrafine Magnesium Hydroxide by Hydro Thermal Route
, Powder Technology, 188: 128-132 (2008).
[18] Mortensen K., PEO-Related Block Copolymer Surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 277: 277-292 (2001).
[19] Wang W., Qiao X., Chen J., Li H., Facile Synthesis of Magnesium Oxide Nano Plates via Chemical Precipitation, Mater. Lett., 61: 3218-3220 (2007).
[20] Meshkani F., Rezaei M., Facile synthesis of Nano Crystalline Magnesium Oxide with High Surface Area, Powder Technology, 196: 85-88 (2009).
[22] Hang Hu Y., Solid-Solution Catalysts for CO2 Reforming of Methane, Catalysis Today, 148: 206-211 (2009).