Investigation of UV-Vis Absorbance of TiO2 Thin Films Sensitized with the Mulberry Pigment Cyanidin by Sol-Gel Method

Document Type : Research Article


1 Physics Group, Sciences Faculty, Khouzestan Payam-e-Noor University, Tehran, I.R. IRAN

2 Physics Group, Sciences Faculty, Khouzestan Payam-e-Noor University, Ahvaz, I.R. IRAN


In this research, effect of sensitized mulberry pigment Cyanidin on the TiO2 Thin films was studied by Sol-Gel method. Nano structured TiO2 layers on the glass substrate using dip-coating sol-gel method was prepared. After making these layers, they were sensitized with Cyanidin pigments available in Mulberry. Crystal structure and phase of this layer and its morphology was studied by XRD and FE-SEM device. The results of the IR spectrum of TiO2 xerogel and Cyanidin-TiO2 xerogel confirmed bands characteristic of TiO2 while the presence of color was confirmed in structure. The UV-Vis absorption spectrum showed the increase of maximum absorption peak up to 595nm in layers sensitized with Cyanidin, which indicated the interaction between the semiconductor and color.


Main Subjects

[1] Hsu J.P, Nacu A., On the Factors Influencing the Preparation of Nanosized Titania Sols, Langmuir, 19(10): 4448-4454 (2003).
[2] Irie H., Watanabe Y., Kazuhito Hashimoto K., Carbon-Doped Anatase TiO2 Powders as a Visible-Light Sensitive Photocatalyst., Chemistry Letters, 32(8):772-773 (2003).
[3] Nezameddin D., Salari D., Behnasuady M.A., Decomposition of Anionic Sodium Dodecylnemzene Sulfonate by UV/TiO2 and UV/H2O2 Processes a-Comparison of Reaction Rates., Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 21(1): 55-65 (2002).
[4] Linsebigler A.L., Lu G., Yates J.T., Photo Catalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, 95(3): 735–758 (1995).
[5] Gupta S.M., Tripathi M., A Review of TiO2 Nanoparticles, Chinese Science Bulletin, 56(16): 1639-1657(2011).
[6] Fitra M., Nair G., Irwanto M., Yusoff M.I., Mariun N., Performance Evaluation of Dye Sensitized Solar Cell for Varying TiO2 Thicknesses., In Applied Mechanics and Materials, 699: 540-545 (2015).
[7] Nam J.E., Jo H.J., Son D.H., Kim D.H., Kang J.K., Effect of Anti-Reflective Layer in Dye-Sensitized Solar Cells., Applied Mechanics and Materials, 705: 320-323 (2015).
[8] Georgieva V., Gadjanova V., Grechnikov A., Donkov N., Sendova-Vassileva M., Stefanov P., Kirilov R., Sol-Gel TiO2 Films as NO2 Gas Sensors, Journal of Physics: Conference Series, 514(1):  012020 (2014).
[9] Weng W., Higuchi T., Suzuki M., Fukuoka T., Shimomura T., Ono M., Radhakrishnan L., Wang H., Suzuki N., Oveisi H., Yamauchi Y., A High‐Speed Passive‐Matrix Electrochromic Display Using a Mesoporous TiO2 Electrode with Vertical Porosity., Angewandte Chemie, 122(23): 4048-4051 (2010).
[10] Chen W., Tao X., Zhang J., Fang Q., Yang J., Sol–Gel‐Processed SiO2/TiO2/ Methylcellulose Composite Materials for Optical Waveguides, Journal of the American Ceramic Society, 88(11): 2998-3002 (2005).
[12] Nazeeruddin M.K., Pechy P., Renouard T., Zakeeruddin S.M., Humphry-Baker R., Comte P., Liska P., Cevey L., Costa E., Shklover V., Spiccia L., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, Journal of the American Chemical Society, 123(8): 1613-1624(2001).
[13] Aberle A.G., Thin-Film Solar Cells, Thin Solid Films, 517(17): 4706-4710 (2009).
[14] Tributsch H., Gerischer H., The Use of Semiconductor Electrodes in the Study of Photochemical Reactions, Berichte der Bunsengesellschaft für physikalische Chemie, 73(8‐9): 850-854 (1969).
[15] Spitler M., Lübke M., Gerischer H., The Role of Triplet States in Dye Sensitization of ZnO Electrodes, Chemical Physics Letters, 56(3): 577-581(1978).
[16] Ramamurthy V., Schanze K.S. (Eds.), "Semiconductor Photochemistry And Photophysics", Vol. (10), CRC Press, New York(2003).
[17] O'regan B., Grätzel M., A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature, 353(6346): 737-740(1991).
[18] Falaras P., Hugot-Le Goff A., Bernard M.C., Xagas A., Characterization by Resonance Raman Spectroscopy of Sol–Gel TiO2 Films Sensitized by the Ru (PPh 3) 2 (dcbipy) Cl 2 Complex for Solar Cells Application, Solar Energy Materials and Solar Cells, 64(2): 167-184(2000).
[19] De Angelis F., Fantacci S., Selloni A., Nazeeruddin M.K., Grätze, M., First-Principles Modeling of the Adsorption Geometry and Electronic Structure of Ru (II) Dyes on Extended TiO2 Substrates for Dye-Sensitized Solar Cell Applications, The Journal of Physical Chemistry C, 114(13)6054-6061(2010).
[20]  Gerfin, T., Grätzel, M. and Walder, L., Molecular and Supramolecular Surface Modification of Nanocrystalline TiO2 Films: Charge‐Separating and Charge‐Injecting Devices. Progress in Inorganic Chemistry, Molecular Level Artificial Photosynthetic Materials, 44, 345-393(1997).
[21] Niyama E., de Alencar A.C., da Vila L.D., Stucchi E.B., Davolos M.R., Filmes Delgados Luminescentes Obtidos a Partir de Hidroxicarbonatos de ítrio Ativados Por európio ou Térbio, Química Nova, 27(2): 183-187 (200).
[22] Nozik A.J., Quantum Dot Solar Cells, Physica E: Low-dimensional Systems and Nanostructures, 14(1): 115-120 (2002).
[23] Cherepy N.J., Smestad G.P., Grätzel M., Zhang J.Z., Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode, The Journal of Physical Chemistry B, 101(45):9342-9351(1997).
[24Tennakone K., Kumarasinghe A.R., Kumara G.R.R.A., Wijayantha K.G.U., Sirimanne P.M., Nanoporous TiO2 Photoanode Sensitized with the Flower Pigment Cyanidin, Journal of Photochemistry and Photobiology A: Chemistry, 108(2): 193-195 (1997).
[25] Agnaldo J.S., Bastos J.B.V., Cressoni J.C., Viswanathan G.M., TiO2 Dye Sensitized Solar Cells, Revista Brasileira de Ensino de Física, 28(1):77-84(2006).
[27] Hinsch A., Kroon J.M., Kern R., Uhlendorf I., Holzbock J., Meyer A., Ferber J., Long‐Term Stability of Dye‐Sensitised Solar Cells, Progress in Photovoltaics: Research and Applications, 9(6): 425-438(2001).
[28] Malacrida C.R., Mottas S.D., Antocianinas Em Suco de Uva: Composição e Estabilidade, Bol. Centro Pesqui. Process. Aliment, 24(1): 59-82 (2006).
[30] Ergun O., Karslioglu O., Yilmaz A., Uner D., Preparation and Characterization of Ordered TiO2 Photocatalysts: Films and Mesoporous Structures, Turkish Journal of Chemistry, 31(5): 501-508 (2007).
[32] Wang, P.Q, Yang B, Jian-Y, Zhou F, and Ya-Q.H. One-pot Synthesis of Rutile TiO2 Nanoparticle Modified Anatase TiO2 Nanorods Toward Enhanced Photocatalytic Reduction of CO2 Into Hydrocarbon Fuels, Catalysis Communications, 29: 185-188 (2012).
[33] Bose A.C., Thangadurai P., Ramasamy S., Grain Size Dependent Electrical Studies on Nanocrystalline SnO2, Materials Chemistry and Physics, 95(1): 72-78 (2006).
[34] Jiles D., "Interoduction to Magnetism and Magnetic Materials", Chapman & Hall, (1990).
[35] González M.B., Wu A., Vilarinho P.M., Influence of Solvents on the Microstructure and Dielectric Properties of Ba0.5Sr0.5TiO3 Thin Films Prepared by a Diol-Based Sol-Gel Process, Chemistry of Materials, 18(7): 1737-1744 (2006).
[36] Kontos A.I., Arabatzis I.M., Tsoukleris D.S., Kontos A.G., Bernard M.C., Petrakis D.E., Falaras P., Efficient Photocatalysts by Hydrothermal Treatment of TiO2, Catalysis Today, 101(3): 275-281(2005).
[37] Maira A.J., Coronado J.M., Augugliaro V., Yeung K.L., Conesa J.C., Soria J., Fourier Transform Infrared Study of the Performance of Nanostructured TiO2 Particles for the Photocatalytic Oxidation of Gaseous Toluene, Journal of Catalysis, 202(2): 413-420 (2001).
[38] Barka N., Qourzal S., Assabbane A., Nounah A., Ait-Ichou Y., Factors Influencing the Photocatalytic Degradation of Rhodamine B by TiO2-Coated Non-Woven Paper, Journal of Photochemistry and Photobiology A: Chemistry, 195(2): 346-351 (2008).