Palladium Nanoparticles Supported on ZnO as an Efficient Catalyst for Heck Coupling Reaction

Document Type : Research Article

Authors

1 Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box. 55181-83111731 Maragheh, I.R. IRAN

2 Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, I.R. IRAN

3 Chemistry Department, Sharif University of Technology, P.O. Box 11155-3615, Tehran, I.R. IRAN

Abstract

In this research, palladium nanoparticles supported on zinc oxide (ZnO) were synthesizedand characterized by various methods such as XRD, SEM and TEM. Then, palladium nanoparticles supported on zinc oxide were used as a catalyst in the Heck coupling reaction. Effects of reaction temperature, nature of used base and solvent effect on the coupling reactions were also studied. In final, a further set of experiments were carried out to check the reusability of the Pd/ZnO
for the Heck reaction. High efficiency without adding any additive makes this catalytic system as a useful and attractive method for carbon-carbon Heck coupling reaction.

Keywords

Main Subjects


 
[1] نیاسری م.ص.، فرشته ز.، "نانوشیمی: روش­های ساخت، بررسی خواص و کاربردها"، انتشارات سخنوران (1391).
[2] Zheng Zh., Zhu H., Frost R.R., Synthesis and Modifications of Metal Oxide Nanostructures and Their Applications, QUT., 1-116 (2009).
[3] Oskam G., Metal Oxide Nanoparticles: Synthesis, Characterization and Application, J. Sol-Gel. Sci. Techn., 37: 161-164 (2006).
[4] Brown G.E., Henrich V.E., Casey W.H., Clark D.L., Eggleston C., Felmy A., Goodman D.W., Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms, Chem. Rev., 99: 77-174 (1999).
[5] معادی، تارا؛ تهیه نانوذره­های نقره توسط عصاره چهار گونه گیاهی و بررسی ویژگی­های ضد میکروبی آن، نشریه شیمی و مهندسی شیمی ایران، (4)33: 1 تا 9 (1393).
[6] Deutschmann O., Knozinger H., Kochlofl K., Turek T., Heterogenous Catalysis and Solid Catalysts, Ullmann’s Encyclopedia of Indust. Chem., 1-110 (2009).
[7] Ali Md. E., Rahman Md. M., Sakar S. M., Abd hamid S. B., Heterogenous Metal Catalysts for Oxidation Reactions-A Review, J. Nanomat., 1-23 (2014).
[8] Sivaramakrishna  A., Suman P., Goud E.V., Janardan S., Sravani Ch., Yadav C.S., Clayton H.S., Recent Progress in Oxidation of n-Alkanes by Heterogenous Catalysis, Research Rev. Mat. Sci. Chem., 1: 2319-6920 (2012).
[10] Freund H.-J., Baumer M., Kuhlenbeck H., Catalysis and Surface Science: What Do We Learn from Studies of Oxide-Supported Cluster Model Systems?, Adv. Catal., 45: 333-384 (2000).
[11] Negi S. S., Sivaranjani K., Singh A.P., Gopinath C.S., Disordered Mesoporous V/TiO2 System for Ambient Oxidation of Sulfides to Sulfoxides, Appl. Catal. A: Gen. 452: 132-138 (2013).
[12] Liu S., Li C., Yu J., Xiang Q., Improved Visible-Light Photocatalytic Activity of Porous Carbon Self-Doped ZnO Nanosheet-Assembled Flowers, Cryst. Eng. Comm., 13: 2533-2541(2011).
[14] Najafpour M.M., Rahimi F., Amini M., Nayeri S., Bagherzadeh M., A Very Simple Method to Synthesize Nano-Sized Manganese Oxide: Anefficient Catalyst for Water Oxidation and Epoxidation of Olefins, Dalton Trans., 41, 11026-11031 (2012).
[15] Amini M., Najafpour M.M., Nayeri S., Pashaei B., Bagherzadeh M., Nano-Layered Manganese Oxides as Low-Cost, Easily Synthesized, Environmentally Friendly and Efficient Catalysts for Epoxidation of Olefins, RSC Adv., 2: 3654-3657 (2012).
[16]  خانی، وجیهه؛ شریفی، لیلا؛  پیامی، آرش؛ کوهانی، حسین؛  میرحسینی، سید حسین؛ تهیه نانو پودر روی اکسید به روش سوختن ژل و استفاده از آن در ساخت پوشش های مقاوم به خوردگی کامپوزیتی پلیمر/ روی اکسید، نشریه شیمی و مهندسی شیمی ایران، (2)34: 1 تا 11 (1394).
[17] Ludi B., Niederberger M., Zinc Oxide Nanoparticles: Chemical Mechanisms and Classical and Non-Classical Crystallization, Dalton Trans., 42: 12554-12568 (2013).
[18] Klingshirn C. F., Meyer B. K., Waag A., Hoffmann A., Geurts J., "Zinc Oxide: From Fundamental Properties Towards Novel Applications", Springer, Heidelberg, (2010).
[19] Lee S.-Y., Park S.-J., TiO2 Photocatalyst for Water Treatment Applications, J. Ind. Eng. Chem. 19: 1761-1769 (2013).
[20] Amini M., Bagherzadeh M., Moradi-Shoeili Z., Boghaei D. M., Pd(OAc)2 without Added Ligand as an Active Catalyst for Mizoroki–Heck Reaction in Aqueous Media, RSC Adv. 2: 12091-12095 (2012).
[25] Moitra N., Matsushima A., Kamei T., Kanamori K., Ikuhara Y. H., Gao X., Takeda K., Zhu Y., Nakanishi K., Shimada T., A New Hierarchically Porous Pd@HSQ Monolithic Catalyst for Mizoroki–Heck Cross-Coupling Reactions, New J. Chem., 38: 1144-1149 (2014).
[26] Mino T., Shirae Y., Sasai Y., Sakamoto M., Fujita T., Phosphine-Free Palladium Catalyzed Mizoroki-Heck Reaction Using Hydrazone as a Ligand, J. Org. Chem., 71: 6834–6839 (2006).
[27] طیبه خانلری، تهیه پلیمر حمایت کننده پالادیوم، برپایه پلی وینیل الکل و استفاده از آن در واکنش هک، نشریه شیمی و مهندسی شیمی ایران، (2)34: 25 تا 40 (1394).
[28] Opanasenko M., Štěpnička P., Čejka J.,  Heterogeneous Pd Catalysts Supported on Silica Matrices, RSC Adv., 4: 65137-65162 (2014). 
[29] Biffis A., Zecca M., Basato M., Metallic Palladium in the Heck Reaction: Active Catalyst or Convenient Precursor?, Eur. J. Inorg. Chem. 1131–1133 (2001).
[31] Labuayai S., Promarak V., Maensiri S., Synthesis and optical properties of nanocrystalline ZnO Powders Prepared by a Direct Thermal Decomposition Route, Appl. Phys. A Mater. Sci. Process, 94: 755-761 (2009).
[32] Pryjomska-Ray I., Gniewek A., Trzeciak A.M., Ziołkowski J.J., Tylus W., Homogeneous/ Heterogeneous Palladium Based Catalytic System for Heck Reaction. The Reversible Transfer of Palladium between Solution and Support, Topics Catal. 40: 173-184 (2006).