Hydrogen Production via Water Gas Shift Reaction over Noble Metals Nanocatalysts Supported on Nanocrystalline Alumina Stabilized with Magnesium Oxide

Document Type : Research Article

Authors

Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, University of Kashan, Kashan, I.R. IRAN

Abstract

Water gas shift reaction is an essential process of hydrogen production and carbon monoxide removal from syngas. In this research, noble metal (Rh, Pt, Pd, Ir, and Ru) nanocatalysts supported on alumina stabilized with magnesium oxide were prepared and employed in high temperature water gas shift reaction for production of hydrogen. The prepared samples were characterized by X-Ray Diffraction (XRD), N2 adsorption (BET), Temperature Programmed Reduction (TPR), H2S chemisorption and Transmission Electron Microscopy (TEM) techniques. The obtained results revealed that the prepared samples showed the BET surface area in the range of 85-179 m2/g. The TEM analysis results showed that the catalysts have a nanocrystalline structure with average crystal size of less than 5 nm, which is in agreement with H2S chemisorption results for measuring the active metal crystallite size. The obtained results indicated that among the prepared catalysts, Ru and Rh showed higher CO conversion due to undesirable methanation reaction. In addition, it was found that amount of methane formation was negligible over Pt catalyst, which implied that all converted carbon monoxide over this catalyst is related to the water gas shift reaction. This catalyst also exhibited stable catalytic performance without any decrease in CO conversion during 10 h time on stream.

Keywords

Main Subjects


[1] Holladay J.D., Hu J., King D.L., Wang Y., An Overview of Hydrogen Production Technologies, Catal. Today, 139: 244-260 (2009).
[2] Deshpande P. A., Hegde M.S., Madras G., Pd and Pt Ions as Highly Active Sites for the Water–Gas Shift Raction Ove Rcombustion Synthe Sized Zirconia and Zirconi a-Modified Ceria, Applied Catalysis B: Environmental ,96: 83-93 (2010)
[4] Ratnasamy Ch., Wagner. J.P., Water Gas Shift Catalysis, Catalysis Reviews, 51:325-440 (2009)
[5] Meshkani F., Rezaei M., High Temperature Water Gas Shift Reaction Over Promoted Iron Based Catalysts Prepared by Pyrolysis Method, International Journal of Hydrogen Energy, 39: 16318-16328 (2014).
[7] Lin J-H, Biswas P., Guliants V. V., Misture S., Hydrogen Production by Water–Gas Shift Reaction Over Bimetallic Cu–Ni Catalysts Supported on La-Doped Mesoporous Ceria, Applied Catalysis A: General 387: 87-94 (2010).
[8] Evin H.N., Jacobs G., Ruiz-Martinez J., Graham U.M., Dozier A., Thomas G., Davis B.H., Low Temperature Water-Gas Shift/Methanol Steam Reforming: Alkali Doping to Facilitate the Scission of Formate and Methoxy C-H Bonds over Pt/ceria Catalyst, Catal. Lett. 122: 166-178 (2008).
[10] Pigos J.M., Brooks C.J., Jacobs G., Davis B.H., Low Temperature Water Gas Shift: Characterization of Pt-Based ZrO2 Catalyst Promoted with Na Discovered by Combinatorial Methods, Appl. Catal., A, 319: 47-57 (2007).
[11] Zhai Y.P., Pierre D., Si R., Deng W.L., Ferrin P., Nilekar A.U., Peng G.W., Herron J.A., Bell D.C., Saltsburg H., Mavrikakis M., Flytzani-Stephanopoulos M.,Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions,  Science, 329: 1633-1636 (2010).
[12] شهیدیان, زهرا؛ پاپن، آزاده، حذف کروم شش ظرفیتی توسط نانو ذره های فریت، نشریه شیمی و مهندسی شیمی ایران، (4)33 : 53 تا 60 (1393).
[13] م.خواجه نوری, م. رضایی ، ف. مشکانی، بررسی تأثیر مواد فعال سطحی بر ساختار و فعالیت کاتالیست نیکل بر پایه منیزیم اکسید در فرایند ریفرمینگ خشک متان، نشریه شیمی و مهندسی شیمی ایران، (1)35 :71 تا 81 (1395).
[15] Gorte R.J., Ceria in Catalysis: From Automotive Applications to the Water–Gas Shift Reaction,  AIChE J., 56(5):1126- 1135 (2010).
[16] Gorte R.J., Zhao S., Studies of the Water-Gas-Shift Reaction with Ceria-Supported Precious Metals, Catal Today, 104(1):18- 24 (2005).
[17] Bunluesin T., GoTte R.J., Graham G.W., Studies of the Water-Gas-Shift Reaction on Ceria-Supported Pt, Pd, and Rh: Implications for Oxygen-Storage Properties, Applied Catalysis B: Environmental 15 107-l 14, (1998).
[18] Liang H., Raitano J. M., He G., Akey A. J. , Herman I. P., Zhang L., Chan S-W , Aqueous
Co-Precipitation of Pd-Doped Cerium Oxide Nanoparticles:Chemistry, Structure, and Particle Growth
, J. Mater. Sci., 47:299-307 (2012).
[19] Evin H.N., Jacobs G., Ruiz-Martinez J., Thomas G.A., Davis B.H., Low Temperature Water–Gas Shift: Alkali Doping to Facilitate Formate C–H Bond Cleaving over Pt/Ceria Catalysts—An Optimization Problem, Catal. Lett. 120: 166–178 (2008).
[20] Zhu X., Shen M., Lobban L.L., Mallinson R.G.,Structural Effects of Na Promotion for High Water Gas Shift Activity on Pt-Na/TiO2, J. Catal., 278:123-132 (2011).
[21] Pazmiño J.H., Shekhar M., Williams W.D., Akatay M.C., Miller J.T., Delgass W.N., Ribeiro F.H., Metallic Pt as Active Sites for the Water–Gas Shift Reaction on Alkali-Promoted Supported Catalysts, Journal of Catalysis, 286 279-286 (2012).
[22] Evin H.N., Jacobs G., Ruiz-Martinez J., Graham U.M., Dozier A., Thomas G., Davis B.H., Low Temperature Water–Gas Shift/Methanol Steam Reforming: Alkali Doping to Facilitate the Scission of Formate and Methoxy C–H Bonds over Pt/ceria Catalyst, Catal. Lett. 122: 9-19 (2008).
[23] Pigos J.M., Brooks C.J., Jacobs G., Davis B.H., Low Temperature Water-Gas Shift: Characterization of Pt-Based ZrO2 Catalyst Promoted with Na Discovered by Combinatorial Methods,  Appl. Catal., A 319: 47-57 (2007)
[24] Pigos J.M., Brooks C.J., Jacobs G., Davis B.H.,Low Temperature Water–Gas Shift: The Effect of Alkali Doping on the CH Bond of Formate over Pt/ZrO2 Catalysts, Appl. Catal., A 328: 14–26 (2007).
[25] Rezaei M., Alavi S. M., Sahebdelfar S. Yan, Zi-Feng, Syngas Production by Methane Reforming with CarbonDioxide on Noble Metal Catalysts, Journal of Natural Gas Chemistry, 15: 327-334 (2006).
[26] Nematollahi B., Mehran Rezaei M., Khajenoori M., Combined Dry Reforming and Ppartial Oxidation of Methane to Synthesis Gas on Noble Metal Catalysts, International Journal of Hydrogen Energy, 36: 2969-2978 (2011).
[27] Khajenoori M, Rezaei M, Nematollahi B. Preparation of Noble Metal Nanocatalysts and their Applications in Catalytic Partial Oxidation of Methane, Journal of Industrial and Engineering Chemistry, 19: 981-986 (2013).
[28] Rostrup-Nielsen J.R., “Catalytic Steam Reforming”, Spriger-Verlag Berlin Heidelberg New York Tokyo (1984).
[29] Dallabetta R.A., Piken A.G., Shelef M., Heterogeneous Methanation-Steadystate Rate of CO Hydrogenation on Supported Ruthenium, Nickel and Rhenium, J. Catal., 40: 173-183 (1975).
[30] Utaka T., Okanishi T., Takeguchi T., Kikuchi R., Eguchi K., Water Gas Shiftreaction of Reformed Fuel over Supported Ru Catalysts, Appl. Catal. A - Gen., 245: 343-351 (2003).