Kinetic and Thermodynamic Study of Cr (III) Ion Removing from Aqueous Media onto the functionalized Multi-Walled Carbonnanotubes

Document Type : Research Article

Authors

1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemistry,Center Tehran Branch, Islamic Azad University,Tehran, I.R. IRAN

Abstract

In this study, the multi-walled carbonnanotubes (MWCNTs) were functionalized and then were characterized by the several techniques such as :Fourier-transform infrared spectroscopy analysis, X-ray powder diffraction ,scanning electron microscopy, Brunauer-Emmett-Teller and Barett-Joyner-Halenda analysis and particle size analyzer. Then, the functionalized multi-walled  carbonnanotubes were used for removing Cr (III) ions from aqueous media. Several adsorption experiments were carried out for evaluating the adsorption capacity of the synthesized FMWCNTs. For adsorbing Cr (III) ions from aqueous solutions. The experimental results showed that the synthesized FMWCNTs have a good capacity for Cr (III) ions adsorption. The effect of the initial concentration of the sorbate, sorbent dosage, temperature, pH  and contact time on the removal  percentage of Cr ( III) ions on to the FMWCNTs and the adsorption capacity of the prepared adsorbent was studied and the optimum value of each of them was determined.Based on the experimental results, the isotherm models evaluation was also performed and the obtained results revealed that the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models can be used for interpretation the experimental results. Kinetic study showed that the kinetic results of this research can be compared with the pseudo first order, Elovich and intraparticle diffusion kinetic models and selecting ones with the largest R2. In addition, adsorption thermodynamic study ,on the basis of the adsorption capacity dependence on the  temperature,was performed. The obtained results showed that the considered adsorption process at the used temperature range is exergonic G0ad<0 and exothermic H0ad<0 and with a decrease in the randomness (S0ad< 0). Based on the magnitude of H0ad, one can claim that the studied adsorption may be a physical adsorption one.

Keywords

Main Subjects


[1] Jovanovic-Petersen l., Gutierrez M., Peterson CM., Chromium Supplementation for Gestational Diabetic Women Improves Glucose Tolerance and Decreases Hyperinsulinemia, Am. Coll. of Nutr., 14: 530 (1995).
[2] Zhou G., Wang Y., Wang J., Qiao W., Long D., Ling H., Effective Removal of Hexavalent Chromium from Aqueous Solutions by Adsorption on Mesoporous Carbon Microspheres, J colloid interface sci., 462: 200-207. (2016).
[3] Dehghani M H., Taher M.M., Bajpai A.K., Heibati B., Tyaqi I., Asif M., Removal of Noxious Cr (VI) Ions Using Sigle- Walled Carbon Nanotubes, Eng. J., 279: 344-352 (2015).
[4] Slavinskaya G.V., Selemenev V.F., Ozonation of Fulvic Acids of Natural Waters in Aqueous Solutions J. Appl. Chem.,76(9): 1472-147 (2003)
[6] Barkat M.,Chegrouche S., Mellah A., Bensmain B., Nibou D., Boufatit M., Application of Algerian Bentonite in the Removal of Cadmium (II) and Chromium (VI) from Aqueous Solutions, Surf. Eng. Mater. Adv. Technol., 4(4): 210 (2014).
[8] Raji C., Anirudhan T.S., Batch Cr (VI) Removal by Polyacrylamide-Grafted Sawdust: Kinetics and hermodynamicsWater Res., 32(12): 3772-3780 (1998).
[9] Malkoc E., Nuhoglu Y., Investigations of Nickel (II) Removal from Aqueous Solutions Using Tea Factory Waste Hazard. Mater, 127(1-3): 120-128 (2005).
[12] Madrakian T., Afkhami A., Ahmadi M., Bagheri, H., Removal of some Cationic Dyes from Aqueous Solutions using Magnetic-Modified Multi-Walled Carbon Nanotubes Hazard. Mater., 196: 109-114 (2011).
[13] Javier Benitez, F., Acero, J. L., Real, F. J., Rold. 418.z, and Rodriguez, E. Chem. Technol. Biotechnol., 86: 858 (2011).
[14] Morse A., Jackson A., Fate of Amoxicillin in Two Water Reclamation Systems, Water, Air, Soil Pollut., 157: 117-132 (2004).
[15] Zhou P., Su C., Li B., Qian, Y., Treatment of High-Strength Pharmaceutical Wastewater and Removal of Antibiotics in Anaerobic and Aerobic Biological Treatment Processes, Environ. Eng., 132: 129 (2006).
[16] Elmolla E.S., Chaudhuri M., Combined Photo-Fenton-SBR Process for Antibiotic Wastewater Treatment, Hazard. Mater., 192: 1418-1426 (2011).
[17] Andreozzi R., Canterino M., Marotta R., Paxeus N., Antibiotic Removal from Wastewaters: The Ozonation of Amoxicillin. Hazard. Mater., 122: 243-250 (2005).
[18] Zazouli M.A., Susanto H., Nasseri S., Ulbricht M., Influences of Solution Chemistry and Polymeric Natural Organic Matter on the Removal of Aquatic Pharmaceutical Residuals by Nanofiltration, Water Res., 43: 3270-3280 (2009).
[19] Goher M.E., Hassan A.M., Abdel – Moniem I.A., Fahmy A.H., Abdo M.H., EI- Sayeel S.M., Removal of Aluminum, Iron and Manganese Ions from Industrial Wastes using Granular Activated Carbon and Amberlite IR 120 H, The Egyptian j. Aqua Res., 41(2): 155-164 (2015).
[20] Liu H., Liang S., Gao J., Ngo H.H., Guo W., Guo Z., Enhancement of Cr(VI) Removal by Modifying Activated Carbon Developed from Zizania Caduciflora with Tartaric Acid during Phosphoric, Eng. J., 246: 168-174 (2014).
[22] Iijima S., Helical Microtubules of Graphitic Carbon, Nature, 354: 56-58 (1991).
[23] Iijima S., Ichihashi T., Single-Sell Carbon Nanotubes of 1-Nmdiameter, Nature, 363: 603-605 (1993).
[24] Yang K., Zhu l., Xing B., Adsorption of Polycyclic Aromatic Hydrocarbon by Carbon Nonomaterials, Environ. sci. technol., 40: 1855-1861 (2006).
[25] Yang K., Wang X., Zhu l., Xing B., Competitive Sorption of Pyrene, Phananthrene, and Naphthalene on Multiwalled Carbon Nanotubes, Environ. Sci. Technol., 40: 5804-5810 (2006).
[26] Moradi O., Sadegh H., Shahryari-Ghoshekandi R., Norouzi M., Application of Carbon Nanotubes in Nanomedicine: New Medical Approach for Tomorrow, iGi, Global, 39: (2015).
[27] Sadegh H., Goma A.M.A., Agarwal S., Gupta V.K., Surface Modification of MWCNTs with Carboxylic‑to‑Amine and Their Superb Adsorption Performance, Int. J. Environ. Res., 13: 523-531(2019).
[28] Goma A.M.A., Lih Teo E.Y., Aboelazm A.A., Sadegh  H.R., Memar  A.O.H., Shahryari-Ghoshekandi  R., Chong  KF., Capacitive Performance of Cysteamine Functionalized Carbon Nanotubes, Mater. Chem. Phys., 197: 100-104 (2017).
[29] Aviles F., Cauich-Rodriguez J. V., Moo-Tah L., May-Pat A., Vargas-Coronado R., Evaluation of Mild Acid Oxidation Treatments for MWCNT Functionalization, 47: 2970-2975 (2009).
[30] Gupta V.K., Tyagia I., Agarwala S., Moradid O., Sadegh H., Shahryari-ghoshekandid ,  Makhloufe A.S.H.,  Goodarzif  M., Garshasbig  A, Study on the Removal of Heavy Metal Ions from Industry Waste by Carbon Nanotubes, Effect of the Surface Modification-A Review, Crit. Rev. Env. Sci. Tec., 46: 93-118 (2015).
[31] Sadegh H.R., Zare K., Maazinejad B., Shahryari-ghoshekandi., Tyagi I., Agarwal S., Gupta V.K., Synthesis of MWCNT-COOH-Cysteamine Composite and its Application for Dye Removal. Mol. Liq., 215: 221–228 (2016).
[32] Sadegh R., Goma A.M.A., Hamdy Makhlouf A.S., Chong K.F., Alharbi N.S., Agarwal S., Gupta V.K., MWCNTs-Fe3O4 Nanocomposite for Hg (II) High Adsorption Efficiency. J. Mol. Liq., 258: 345-353 (2018).
[33] Taghi samadi M., Shokoohi R., Araghchian , Tarlani A, Amoxiciline Removal from Aquatic Solutions using Multi Walled Carbon Nanotubes, Journal of Mazandaran University of Medical Sciences , 24(117): 103-115 (2014). 
[34] Aghaie M., Aghaie H., “An Introduction to Chemical Thermodynamics of Solids”, Sections (7-8) (2009).
[35] Sharifi A., Montazer Ghaem., Naeimi A., Rajabi Abhari A., Vafaee., Goma A.M.A., Sadegh H.R., Investigation of Photocatalytic Behavior of Modified ZnS:Mn/MWCNTs Nanocomposite for Organic Pollutants Effective Photodegradation. Environ. Manag., 247: 624–632 (2019).
[36] GuptaK., Agarwal S., Bharti A.K., Sadegh H.R., Adsorption Mechanism of Functionalized Multi-Walled Carbon Nanotubes for Advanced Cu (II) Removal. J. Mol. Liq., 230: 667-673 (2017).
[37] Sadegh H.R., Shahryari-Ghoshekandi R., Agarwal S., Tyagi I., Asif , Gupta V.K., Microwave-Assisted Removal of Malachite Green by Carboxylatem Functionalized Multi-Walled Carbon Nanotubes: Kinetics and Equilibrium Study, J. Mol. Liq., 206: 151-158 (2015).
[38] Langmuir I., The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids.  Am. Chem. Soc., 38(11): 2221-2295 (1916).
[39] Barmaki Z., Aghaie , Kinetic and Thermodynamic Study of Chromium Picolinate Removing from Aqueous Solution onto the Functionalized Multi-Walled Carbon Nanotubes: Iran. J. Chem. Chem. Eng (IJCCE), 40(3): 765-779 (2021).
[40] Pashai Gatabi M., Milani Moghaddam H., Ghorbani M., Efficient Removal of Cadmium using Magnetic Multi Walled Carbon Nanotube Nano Adsorbents: Equilibrium, Kinetic and Thermodynamic Study, Nanopart Res.,18: 189 (2016).
[42] Mahmoodi Z., Aghaie , Fazaeli R., Adsorption Study of Violet 8 and Congo Red Dyes onto Aloe Vera, Phys. chem. Res.,7(3): 547-560 (2019).
[44] Kondabey J., Ghorbani H., Aghaie H., Fazaeli R., Study of the Adsorption and Photo Catalyst Properties of Copper Oxide with Different Morphologies in Removal of Cr(III) from Aqueous Media. J.water sci. technol. 80(5): 827–835 (2019).
[46] Moghaddam M,, Rahdar S., Taghavi ,  Cadmium Removal from Aqueous Solutions  Using  Saxaul Tree Ash. Iran. J. Chem. Chem. Eng, (IJCCE) 35 (3): 45-52(2016).
[48] Olgun A., Atar N., Removal of Copper and Cobalt from Aqueous Solution onto Waste Containing Boron Impurity. Eng.  J., 167(1): 140-147 (2011).
[49] Lu C., Chiu H., Liu C., Removal of Zinc (II) from Aqueous Solution by Purified Nano Tubes, Kinetics and Equilibrium Studies, Eng. chem. Res., 45: 2850-2855 (2006).
[50] Kanthapazham R., Ayyavu C., Mahenirad A.S., Removal of Pb (II), Ni (II), Cd (II) Ion in Aqueous Media using Functionalized MWCNT Wrapped Polypyrrole Nano Composite, Desalination and water treatment, 57(36): 16871-16885 (2016).
[52] Moradi O., Zare K., Adsorption of pb (II), cu (II), cd (II) Ions in Aqueous Solution on SWCNTS and SWCNT-COOH Surfaces Kinetics Studies. Fuller. Nanotub. Carbon Nanostructures, 19: 628-652 (2011).
[53] Kalavathy H., Karthik B., Miranda L. R., Removal and Recovery of Ni and Zn from Aqueous Solution using Activated Carbon from Hevea Brasiliensis: Batch and Column Studies. Colloids Surf., B Biointerfaces.,78(2): 291-302 (2010).
[54] Faghihian H., Rasekh M., Removal of Chromate from Aqueous Solution by a Novel Clinoptilolite Polyanillin Composite, J. Chem. Chem. Eng.(IJCCE), 33(1): 1-130 (2014).
[55] Esmaeili A., Ghasemi S., Zamani F., Investigation of Cr (VI) Adsorption by Dried Brown Algae Sargassum sp and Its Activated Carbon, Iran. Chem. Chem. Eng.(IJCCE), 31(4): 1-136 (2012).
[56] Ho Y.S., McKay G., Pseudo-Second Order Model for Sorption ProcessesProcess Biochem., 34(5): 451-465 (1999).
[57] Malkoc E., Removal Ni (II) from Aqueous Solutions using Cone Biomass of Thuja Orientalis, Hazard. Mater., 137(2): 899-908 (2006).
[58] Ho Y S., “Adsorption of Heavy Metals from Waste Streams by Peat”,  D. Thesis, The University of Birmingham. (1995).
[59] Ho Y.S., McKay G., Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood, Process Saf. Environ., 76(2): 183-191 (1998).
[60] Khezami L., Capart, R., Removal of Chromium (VI) from Aqueous Solution by Activated Carbons: Kinetic and Equilibrium Studies Hazard. Mater,123(1-3): 223-231 (2005).
[61] Rajaei G., Aghaie H., Zare K., Aghaie M., Adsorption of Cu (II) and Zn (II) Ions from Aqueous Solutions onto Fine Powder of Typha latifolia Root: Kinetics and Isotherm Studies, Res. Chem. Intermed., 39: 3579-3594 (2013).
[62] Ho Y.S., McKay G., Batch Lead (II) Removal from Aqueous Solution by Peat: Equilibrium and KineticsTrans I Chem. E, 77(part B): 165-173 (1999).
[63] Teker M., Imamoğlu M., Saltabaş Ö., Adsorption of Copper and Cadmium Ions by Activated Carbon from Rice HullsJ. Chem, 23(2): 185-192 (1999).