Design of Pincer Fullerene Ligands thorough [2+3] cycloaddition

Document Type : Research Article

Authors

Faculty of physics and chemistry, Department of Chemistry, Alzahra University, Vanak, Tehran, I.R. IRAN

Abstract

[2+3] cycloaddition reactions of a fullerene C20 with azomethine ylide derivatives (RHC-NH+-CHR) have investigated in order to design new pincer fullerene ligands. The negative values of [2+3] cycloaddition reaction energies indicate the exothermic character of formation of the considered pincer fullerenes. Exploring of the effects of nature of the flanking arms on fullerene pincer ligands based on the frontier molecular orbital analysis (FMO) indicate that reaction energies well correlate with HOMO of 1,3 dipoles. The pincer-ligated metal complexes obtained by the addition of transition metals to the pincer bites. Natural bonding orbital analyses (NBO) are performed to investigate the delocalization of the localized bonds and lone pairs of donor nitrogen atoms and the transition metals in the considered pincer-ligated metal complexes. Based on our results, the strongest interaction among all the interactions is due to the delocalization of electrons from lone pairs of central nitrogen atoms to the LP* of the transition metal, following by the lone pairs of nitrogen atoms in the flanking arms.

Keywords

Main Subjects


[1] Lawrence M.A.W., Green K.-A., Nelson P.N., Lorraine S.C., Review: Pincer ligands-Tunable Versatile and Applicable. Polyhedron, 143: 11-27 (2018).
[4] O'Reilly M.E., Veige A.S., Trianionic Pincer and Pincer-Type Metal Complexes and Catalysts. Chem. Soc. Rev., 43: 6325-6369 (2014).
[5] Deng Q-H., Melen R.L., Gade L.H., Anionic Chiral Tridentate N-Donor Pincer Ligands in Asymmetric Catalysis. Acc. Chem. Res., 47: 3162-3173 (2014).
[6] جدی زاهد ج.، رستمی ب.، بررسی تغییرهای تراوایی به دلیل رسوب نمک در فرایند ترسیب گاز کربن دی اکسید، نشریه شیمی و مهندسی شیمی ایران، (3)36: 187 تا 197 (1396).
[7] Morales-Morales D., Jensen C.M., The Chemistry of Pincer Compounds, Elsevier, Amsterdam, (2007).
[8] Szabo K.J., Wendt O.F., Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis, Wiley-VCH, Germany, (2014).
[9] صابری مقدم ع.، نوذری ع.، بررسی عملکرد کاتالیست صنعتی فرایند ریفرمینگ بخار آب با متان در شرایط گوناگون، نشریه شیمی و مهندسی شیمی ایران، (1)36: 105 تا 115 (1396).
[10] Bauer G., Hu X., Recent Developments of Iron Pincer Complexes for Catalytic Applications. Inorg. Chem. Front., 6: 741–765 (2016).
[11] Peris E., Crabtree R.H., Key Factors in Pincer Ligand Design, Chem. Soc. Rev., 47: 1959-1968 (2018).
[12] Choi J., MacArthur A.H.R., Brookhart M., Goldman A.S., Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Chem. Rev., 111: 1761-1779 (2011).
[13] van Koten G., Milstein D., "Organometallic Pincer Chemistry", Springer-Verlag, Berlin-Heidelberg (2013).
[14] Deng Q-H., Melen R.L., Gade L.H., Anionic Chiral Tridentate N-Donor Pincer Ligands in Asymmetric Catalysis. Acc Chem. Res., 47: 3162-3173 (2014).
[15] Prato M., Maggini M., Fulleropyrrolidines: a Family of Full-Fledged Fullerene Derivatives. Acc. Chem. Res., 31: 519-526 (1998).
[16] Souzangarzadeh S., 1,3-Dipolar Cycloaddition Reaction of Nitrile Oxides to Isatin Imines. IJCCE, 35(1): 31-35 (2016).
[17] Illescas B.M., Martín N., [60]Fullerene Adducts with Improved Electron Acceptor Properties. Org. Chem., 65: 5986-5995 (2000).
[18] Lu X., Tian F., Xu X., Wang N.Q., Zhang Q., Theoretical Exploration of the 1,3-dipolar Cycloadditions Onto the Sidewalls of (n, n) Armchair Single-Wall Carbon Nanotubes. J. Am. Chem. Soc., 125: 10459-10464 (2003).
[20] Osuna S., Swart M., Solá M., Dispersion Corrections Essential for the Study of Chemical Reactivity in Fullerenes. J. Phys. Chem. A, 115: 3491-3496 (2011).
[21] Anafcheh M., Ghafouri R., Mono- Andmultiply-Functionalized Fullerene derivatives through 1,3-dipolar Cycloadditions: A DFT Study, Physica. E., 56: 351–356 (2014).
[22] Georgakilas V., Bourlinos A., Gournis D., Tsoufis T., Trapalis C., Mateo-Alonso A., Prato M., Multipurpose Organically Modified Carbon Nanotubes: from Functionalization to Nanotube Composites. J. Am. Chem. Soc., 130: 8733-8740 (2008).
[23] Ess D.H., Houk K.N., Distortion/interaction energy control of 1, 3-dipolar cycloaddition reactivity. J. Am. Chem. Soc, 129: 10646-10647 (2007).
[24] Ess D.H., Houk K.N., Theory of 1,3-Dipolar Cycloadditions: Distortion/Interaction and Frontier Molecular Orbital Models. J. Am. Chem. Soc., 130: 10187-10198 (2008).
[26] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Zakrzewski V.G., Montgomery Jr J.A., Stratmann R.E., Burant J.C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G.A., Ayala P.Y., Cui Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Cioslowski J., Ortiz J.V., Baboul A.G., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Andres J.L., Gonzalez C., Head- Gordon M., Replogle E.S., Pople J.A., Gaussian 98, Gaussian Inc, Pittsburgh PA (1998).
[27] Diefenbach A., Bickelhaupt F.M., Activation of H–H, C–H, C–C and C–Cl Bonds by Pd(0). Insight from the Activation Strain Model, J. Phys. Chem. A., 108: 8460-8466 (2004).