Synthesis of Ce La / HAPSO-34 Catalyst and Evaluation of its Performance in the Conversion Process of Methanol to Propylene

Document Type : Research Article


Research Institute of Petroleum Industry, Tehran, I.R. IRAN


In this study, the catalysts (HSAPO-34) were synthesized by the hydrothermal method using of n-poropyl amine as a meso structure-forming agent. Since the main problem of these catalysts is their short lifetime due to coke formation. Cokes are mainly aromatic and branched isomers, are formed inside the catalyst vacancies and is irreversibly absorbed into the acidic sites, thereby reducing the concentration of the catalytic acid sites. Therefore, using of various metals such as lanthanides as a modifier by creating new acidic sites improve the catalyst acidity and prolonged the catalyst lifetime. The combination of Ce and La metal salts was used to improve the acidity and prolonged the synthesized catalyst lifetime. The catalyst properties (Ce La / HSAPO-34) were determined by various methods such as XRD, FESEM, NH3-TPD and BET. Catalytic performance (Ce La / HSAPO-34) was studied in a fixed bed reactor in methanol to propylene conversion reaction. The catalytic test results showed methanol conversion above 90% and propylene selectivity (48.5%) and it took 8 hours for the catalyst to deactivation.


Main Subjects

[1] Hu H., Ying W., Fang D.J.J.o.N.G.C., Reaction and Deactivation Kinetics of Methanol-to-Olefins Process Based on a Special TGA Reactor, Journal of Natural Gas Chemistry, 19(4): 409-416 (2010).
[2]  Sena, F.C., De Souza B.F., De Almeida N.C., Influence of Framework Composition Over SAPO-34 and MeAPSO-34 Acidity,  Applied Catalysis A: General, 406(1-2): 59-62 (2011).
[4] Tan J., Liu Z., Bao X., Liu X., Han X., He C., Zhai R., Crystallization and Si Incorporation Mechanisms of SAPO-34, Microporous and Mesoporous Materials, 53(1-3):  97-108 (2002).
[6] Zhang Y., Zhou Y., Tang M., Liu X., Duan Y., Effect of La Calcination Temperature on Catalytic Performance of PtSnNaLa/ZSM-5 Catalyst for Propane Dehydrogenation, Chemical Engineering Journal, 181-182: 530-537 (2012).
 [7]   Ghalbi-Ahangari M., R.Ranjbar P., Rashidi A.M., Teymuri M., Synthesis of Hierarchical SAPO-34 and Its Enhanced Catalytic Performance in Methanol to Propylene Conversion Process,  Petroleum Science and Technology, 37(22): 2231-2237 (2019).
[8] Ghalbi-Ahangari M., R.Ranjbar P., Rashidi A.M., Teymuri M., The High Selectivity of Ce-Hierarchical SAPO-34 Nanocatalyst for the Methanol to Propylene Conversion Process, Reaction Kinetics, Mechanisms and Catalysis, 122(2): 1265-1279 (2017).
[9] Dubois D.R., Obrzut DL., Liu J., Thundimadathil J., Conversion of Methanol to Olefins Over Cobalt-Manganese-and Nickel-Incorporated SAPO-34 Molecular Sieves, Fuel Processing Technology, 83(1-3): 203-218 (2003).
[10] Ye L., Cao F., Ying W., Fang D., Sun Q., Effect of Different TEAOH/DEA Combinations on SAPO-34’s Synthesis and Catalytic Performance, Journal of Porous Materials, 18(2): 225-232 ( 2011).
[12] Campelo J., Campelo J.M., Garcia A., Herencia J.F., Luna D., Conversion of Alcohols (α-Methylated Series) on AlPO4 Catalysts, J. Catalysis, 151(2): 307-314 (1995).
[13] Arena F., Dario R, Parmaliana A.J.A.C.A.G., A Characterization Study of the Surface Acidity of Solid Catalysts by Temperature Programmed Methods,  Appl. Catal. A: General, 170(1): 127-137 (1998).
[14] Charghand  M., Haghighi M., Aghamohammadi S.J.U.S., The Beneficial Use of Ultrasound in Synthesis of Nanostructured Ce-Doped SAPO-34 Used in Methanol Conversion to Light Olefins, Ultrasonics sonochemistry, 21(5): 1827-1838 (2014).
[15] خراشه ف.، رهیده ح.، ایزد بخش ع.، کاربرد نظریه تراوش در مدل سازی افت فعالیت راکتور بستر ثابت در واکنش کاتالیستی تبدیل ; متانول به الفین های سبک. نشریه شیمی و مهندسی شیمی ایران.، (4)32: 9 تا 24 (1390).
[16] Gunawardena D.A., Fernando S.D.J.J.O.T., Thermodynamic Equilibrium Analysis of Methanol Conversion to Hydrocarbons Using Cantera Methodology, Journal of Thermodynamics,12: 64-73 (2012).
[17] Dudukovic M.P., Mills P.L., Challenges in Reaction Engineering Practice of Heterogeneous Catalytic Systems, in Advances in Chemical Engineering, Handbook of Industrial Chemistry and  Biotechnology, Springer, 307-389 (2012).
[18] Gandarillas A.E.M., Geem K.M.V., Reyniers M.F., Marin G.B., Coking Resistance of Specialized Coil Materials During Steam Cracking of Sulfur-Free Naphtha Ullmann›s. Encyclopedia of Industrial Chemistry, 53(35): 13644-13655 (2014).
[19] حقیقی م.، صادقپور پ.، بررسی تأثیر غلظت منگنز و نیکل در سنتز کاتالیست نانوساختار برای تبدیل متانول به الفین های سبک. نشریه شیمی و مهندسی شیمی ایران. (1)34: 11 تا 27 (1394).
[20] Kang M., Methanol Conversion on Metal-Incorporated SAPO-34s (MeAPSO-34s),  Journal of Molecular Catalysis A: Chemical, 160(2): 437-444 (2000).
[21] Wei Y., He Y., Zhang D., Xu  L., Meng S., Liu Z., Sue B.L., Study of Mn Incorporation into SAPO Framework: Synthesis, Characterization and Catalysis in Chloromethane Conversion to Light Olefins, Microporous and Mesoporous Materials, 90(1): 188-197 (2006).