Evaluation of Antimicrobial Property of Ag/Fe3O4 Nanocomposites Synthesized with Starch

Document Type : Research Article

Authors

1 Iranian Institute of Research & Development in Chemical Industries, Academic Center for Education, Culture & Research (ACECR), Karaj, I.R. IRAN

2 Bio-refinery group, Faculty of New Technologies Engineering, Shahid Beheshti University, Zirab Campus, Mazandaran, I.R. IRAN

3 Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, I.R. IRAN

Abstract

Silver-iron oxide binary nanocomposites have attracted great attentions due to hybrid unique properties of silver (Ag) and iron oxide (Fe3O4) nanoparticles such as magnetic, optical and antimicrobial properties. Catalytic degradation of organic pollutants, electrochemical sensor and targeted antimicrobial agents are some potential applications of Ag/Fe3O4 nanocomposites. In this study, Ag/Fe3O4 nanocomposites were synthesized using starch as a stabilizer and linker between Ag and Fe3O4 nanoparticles. Their antibacterial and antibiofilm activities against E. coli, P. aeruginosa and S. aureus were evaluated and compared with Ag nanoparticles. The 15–20 nm Ag-nanoparticles adhered as single particles to the agglomerations of 2-10 nm Fe3O4 nanoparticles. MIC and MBEC of the nanocomposites, depending on cell types and producing conditions, were 2-14 ppm and 20-30 ppm, respectively. In the presence of nanocomposites at a half of MIC concentration, Lag phase of growth curve of E. coli and P. aeruginosa increased about 8h and 5h, respectively. Bare Fe3O4 nanoparticles have no significant effect on growth curve of gram positive and negative bacteria, while Ag/Fe3O4 nanocomposites showed more antibacterial activity against gram negative bacteria than Ag nanoparticles. Antibiofilm activity of Ag/Fe3O4 nanocomposites against P. aeruginosa and Methicillin-resistant S. aureus was significantly more than Ag nanoparticles. Unlike Ag nanoparticles, Ag/Fe3O4 nanocomposites at a MBEC concentration inhibited the increase of biofilm biomass. Amount of starch acted an important role on the nanocomposite antibacterial activity. Evaluation of bacterial death time exhibited that Ag nanoparticles killed tested gram- positive and negative species faster than Ag/Fe3O4 nanocomposites that may be attributed to involvement of Ag nanoparticles in the starch matrix and Fe3O4 agglomerations and subsequently, slow release of Ag ions.

Keywords

Main Subjects


[1]    Ghaseminezhad S.M., Hamedi S., Shojaosadati S.A., Green Synthesis of Silver Nanoparticles by a Novel Method: Comparative Study of Their Properties, Carbohydrate polymers, 89(2): 467-472 (2012).
[2] معادی ت.، قهرمان زاده ر.، یوسفی م.، محمدی ف.، تهیه نانوذره‌های نقره توسط عصاره چهار گونه گیاهی و بررسی ویژگی‌های ضد میکروبی آن، شیمی و مهندسی شیمی ایران، (4)33: 1 تا 9 (1393).
[3]  کوکبی ی.، امانی ح.، کریمی نژاد ح.، بررسی خاصیت ضد باکتریایی نانوذره‌های نقره در پلی استایرن‌های انبساطی دیرسوز و استاندارد، شیمی و مهندسی شیمی ایران، (4)35: 161 تا 174 (1395).
[4]    Ghaseminezhad S.M., Shojaosadati, S.A., Meyer, R.L., Ag/Fe3o4 Nanocomposites Penetrate and Eradicate S. Aureus Biofilm in an in Vitro Chronic Wound Model. Colloids and Surfaces B: Biointerfaces. 163: 192-200 (2018).
[5]    Qin, H., Cao, H., Zhao, Y., Zhu, Ch., Cheng, T., Wang , Q., Peng,  X., Cheng, M., Wang, J., Jin, G., Jiang , Y., Zhang , X., Liu, X., Chu, P. K., In Vitro and in Vivo Anti-Biofilm Effects of Silver Nanoparticles Immobilized on Titanium. Biomaterials. 35(33): 9114-9125 (2014).
[7]    Markova, Z., Siskova, K., Filip, J., Safarova, K., Prucek, R., Panacek, A., Kolarb, M., Zboril, R., Chitosan-Based Synthesis of Magnetically-Driven Nanocomposites with Biogenic Magnetite Core, Controlled Silver Size, and High Antimicrobial Activity. Green Chemistry. 14(9): 2550-2558 (2012).
[8]    Chudasama, B., Vala, A. K., Andhariya, N., Upadhyay, R. V., Mehta, R. V., Enhanced Antibacterial Activity of Bifunctional Fe3O4-Ag Core-Shell Nanostructures. Nano Research. 2(12): 955-965 (2009).
[9]    Prucek, R., Tuček, J., Kilianová, M., Panáček, A., Kvítek, L., Filip, J., Kolář, M., Tománková, K., Zbořil, R, The Targeted Antibacterial and Antifungal Properties of Magnetic Nanocomposite of Iron Oxide and Silver Nanoparticles. Biomaterials. 32(21): 4704-4713 (2011).
[10] Dallas, P., Tucek, J., Jancik, D., Kolar, M., Panacek, A., Zboril, R., Magnetically Controllable Silver Nanocomposite with Multifunctional Phosphotriazine Matrix and High Antimicrobial Activity. Advanced Functional Materials. 20(14): 2347-2354 (2010).
[12] Ghaseminezhad, S.M., Shojaosadati, S.A., Evaluation of the Antibacterial Activity of Ag/Fe3O4 Nanocomposites Synthesized Using Starch. Carbohydrate polymers. 144: 454-463 (2016).
[13] Lazić, D. V., Mihajlovski, D. K., Mraković, D. A., Illés, D. E., Stoiljković, D. M., Ahrenkiel, P. S. P., Nedeljković, J. M., Antimicrobial Activity of Silver Nanoparticles Supported by Magnetite. ChemistrySelect. 4(14): 4018-4024 (2019).
[14] Taufiq, A., Saputro, R. E., Susanto, H., Hidayat, N., Sunaryono, S., Amrillah, T., Wijaya, H. W., Mufti, N., Simanjuntak, F. M., Synthesis of Fe3O4/Ag Nanohybrid Ferrofluids and Their Applications as Antimicrobial and Antifibrotic Agents. Heliyon. 6(12): e05813 (2020).
[15]T.N.L. Nguyen, T.V. Do, T.V. Nguyen, P.H. Dao, A.H. Nguyen, D.A. Dinh, T.A. Nguyen, T.K.A. Vo, T.L. Le, Antimicrobial Activity of Acrylic Polyurethane/ Fe3O4-Ag Nanocomposite Coating. Progress in Organic Coatings. 132: 15-20 (2019).
[16] Chang, P.R., Yu, J., Ma, X., Anderson, D.P., Polysaccharides as Stabilizers for the Synthesis of Magnetic Nanoparticles. Carbohydrate polymers. 83(2): 640-644 (2011).
[17] Hwang, I.S., Hwang, J.H., Choi, H., Kim, K.J., Lee, D.G., Synergistic Effects between Silver Nanoparticles and Antibiotics and the Mechanisms Involved. Journal of Medical Microbiology. 61(12): 1719-1726 (2012).
[18] Amarjargal A., Tijing L. D., Im I.-T., Kim C.S., Simultaneous Preparation of Ag/ Fe3O4 Core–Shell Nanocomposites with Enhanced Magnetic Moment and Strong Antibacterial and Catalytic Properties. Chemical Engineering Journal. 226: 243-254 (2013).
[19] Khan, Z., Singh, T., Hussain, J.I., Obaid, A.Y., Al-Thabaiti, S.A., El-Mossalamy, E.H., Starch-Directed Green Synthesis, Characterization and Morphology of Silver Nanoparticles. Colloids and Surfaces B: Biointerfaces. 102: 578-584 (2013).
[20] Lu, W., Shen, Y., Xie, A., Zhang, W., Preparation and Protein Immobilization of Magnetic Dialdehyde Starch Nanoparticles. The Journal of Physical Chemistry B. 117(14): 3720-3725 (2013).
[21] Uthumporn, U. , Shariffa, Y. N. , Fazilah, A., Karim, A. A.  , Effects of Naoh Treatment of Cereal Starch Granules on the Extent of Granular Starch Hydrolysis. Colloid and Polymer Science. 290(15): 1481-1491 (2012).
[22] Valencia, G.A., Vercik, L.C.O., Ferrari, R., Vercik, A., Synthesis and Characterization of Silver Nanoparticles Using Water‐Soluble Starch and Its Antibacterial Activity on Staphylococcus Aureus. StarchStärke. 65(11-12): 931-937 (2013).
[23] Xia, B. , Cui, Q., He, F., Li - Langmuir, L., Preparation of Hybrid Hydrogel Containing Ag Nanoparticles by a Green in Situ Reduction Method. Langmuir. 28(30): 11188-11194 (2012).
[24] Zhang, G., Shen, X., Yang, Y., Facile Synthesis of Monodisperse Porous Zno Spheres by a Soluble Starch-Assisted Method and Their Photocatalytic Activity. The Journal of Physical Chemistry C. 115(15): 7145-7152 (2011).
[25] Arakha M., Pal S., Samantarrai D., Panigrahi T.K., Mallick B.C., Pramanik K., Mallick B., Jha S., Antimicrobial Activity of Iron Oxide Nanoparticle Upon Modulation of Nanoparticle-Bacteria Interface. Scientific Reports. 5: (2015).
[26] Velusamy P., Chia-Hung S., Shritama A., Kumar G.V., Jeyanthi V., Pandian K., Synthesis of Oleic Acid Coated Iron Oxide Nanoparticles and Its Role in Anti-Biofilm Activity against Clinical Isolates of Bacterial Pathogens. Journal of the Taiwan Institute of Chemical Engineers59: 450-456 (2015).
[27] Jain, N., Bhargava, A., Rathi, M., Dilip, R.V., Panwar, J., Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles. PloS One. 10(7): e0134337 (2015).
[28] Wirth, S.M., Lowry, G.V., Tilton, R.D., Natural Organic Matter Alters Biofilm Tolerance to Silver Nanoparticles and Dissolved Silver. Environmental Science & Technology. 46(22): 12687-12696 (2012).
[29] Yang, Y. Alvarez, P.J., Sublethal Concentrations of Silver Nanoparticles Stimulate Biofilm Development. Environmental Science & Technology Letters. 2(8): 221-226 (2015).
[30] Durmus N.G. Webster T.J., Eradicating Antibiotic‐Resistant Biofilms with Silver‐Conjugated Superparamagnetic Iron Oxide Nanoparticles. Advanced Healthcare Materials. 2(1): 165-171 (2013).