Removal of Benzene, Toluene and m-Xylene from aqueous solution by Fe-ZSM-5 nano-zeolite synthesized from coal fly ash

Document Type : Research Article


1 Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, I.R. IRAN

2 Faculty of Chemistry, University of Mazandaran, Babolsar, I.R. IRAN


In this study, a meso-porous Fe-ZSM-5 nano-zeolite (SiO2/Al2O3=40) was synthesized from a type of coal fly ash (CFA) containing high amount of muscovite plates by hydrothermal treatment and then the physicochemical characterization of CFA and Fe-ZSM-5 was examined using various techniques. The final product (Fe-ZSM-5) was applied in the simultaneous removal of benzene (B), toluene (T) and m-xylene (X) from aqueous solutions. The effect of adsorption parameters including pH solution, amount of dosage, contact time, initial concentration of BTX and temperature versus BTX removal efficiency was assessed under batch experiments. The maximum adsorption capacity of BTX (qmax) was obtained at optimum condition of pH=7 and 90 min (qmax; B=9.16<T=9.57<X=9.9 mg/L). Kinetic and isotherm studies showed that the adsorption equilibrium data was in good agreement with pseudo-second order and Freundlich models. In addition, thermodynamic assessments illustrated that BTX adsorption onto Fe-ZSM-5 nano-zeolite was feasible, exothermic and spontaneous at lower temperature. Based on the obtained empirical results, Fe-ZSM-5 nano-zeolite can be applied as an efficient, green and cost-effective adsorbent to remove hazardous hydrocarbons from aqueous solutions.


Main Subjects

[1] Saha D., Mirando N., Levchenko A., Liquid and Vapor Phase Adsorption of BTX in Lignin Derived Activated Carbon: Equilibrium and Kinetics Study, J. Cleaner Prod., 182: 372-378 (2018).
[4] de Oliveira Frós A.C.D., de Oliveira M.A., Macêdo Soares A.A., Hallwass F., Chojnacki J., Barros B.S., Júnior S.A., Kulesza J., Selective Adsorption of BTEX on Calixarene-based Molecular Coordination Network Determined by 13C NMR Spectroscopy, Inorg. Chim. Acta, 492: 161-166 (2019).
[5] da Luz C., Ulson de Souza S.M.D.A. G., de Souza A.A.U., Dervanoski A., Moraes A.D.O.S., Wood B.D., A Multiscale Model for Carbon Adsorption of BTX Compounds: Comparison of Volume Averaging Theory and Experimental Measurements, Chem. Eng. Sci., 184: 285-308 (2018).
[6] Lian Q., Konggidinata M.I., Ahmad Z.U., Gang D.D., Yao L., Subramaniam R., Revellame E., Holmes W.B., Zappi M., Combined Effects of Textural and Surface Properties of Modified Ordered Mesoporous Carbon (OMC) on BTEX Adsorption, J. Hazard. Mater., 377: 381-390 (2019).
[7] Anjum H., Johari K., Gnanasundaram N., Appusamy A., Thanabalan M., Investigation of Green Functionalization of Multiwall Carbon Nanotubes and its Application in Adsorption of Benzene, Toluene & P-Xylene from Aqueous Solution, J. Cleaner Prod., 221: 323-338 (2019).
[8] Farsouni Eydi E., Shariati A., Khosravi-Nikou M.R., separation of BTEX Compounds (Benzene, Toluene, Ethylbenzene and Xylenes) from Aqueous Solutions using Adsorption Process, J. Dispersion Sci. Technol., 40(3): 453-463 (2019).
[9] Filho C.M.C., Matias T., Durães L., Valente A.J.M., Efficient Simultaneous Removal of Petroleum Hydrocarbon Pollutants by a Hydrophobic Silica Aerogel-Like Material, Colloids Surf., A, 520: 550-560 (2017).
[11] Hosseini Asl S.M., Masomi M., Hosseini M., Javadian H., Ruiz M., Sastre A.M., Synthesis of Hydrous Iron Oxide/Aluminum Hydroxide Composite Loaded on Coal Fly Ash as an Effective Mesoporous and Low-Cost Sorbent for Cr (VI) Sorption: Fuzzy Logic Modeling, Process Saf. Environ. Prot., 107: 153-167 (2017).
[12] Hosseini Asl S. M., Ghadi A., Sharifzadeh Baei M., Javadian H., Maghsudi M., Kazemian H., Porous Catalysts Fabricated from Coal Fly Ash as Cost-Effective Alternatives for Industrial Applications: A Review, Fuel, 217: 320-342 (2018).
[14] Chen Y., Cong S., Wang Q., Han H., Lu J., Kang Y., Kang W., Wang H., Han S., Song H., Zhang J., Optimization of Crystal Growth of Sub-Micron ZSM-5 Zeolite Prepared by using Al(OH)3 Extracted from Fly Ash as an Aluminum Source, J. Hazard. Mater., 349: 18-26 (2018).
[15] Hosseini Asl S.M., Javadian H., Khavarpour M., Belviso C., Taghavi M., Maghsudi M., Porous Adsorbents Derived from coal Fly Ash as Cost-Effective and Environmentally-Friendly Sources of Aluminosilicate for Sequestration of Aqueous and Gaseous Pollutants: A Review, J. Cleaner Prod., 208: 1131-1147 (2019).
[16] Sahebdelfar S., Yaripour F., Ahmadpour S., Khorasheh F., Methanol-to-Hydrocarbons Product Distribution over SAPO-34 and ZSM-5 Catalysts: The Applicability of Thermodynamic Equilibrium and Anderson-Schulz-Flory Distribution, Iran. Chem. Chem. Eng. (IJCCE), 38(2): 49-59 (2019).
[17] Alipour S.M., Halladj R., Askari S., Effects of the Different Synthetic Parameters on the Crystallinity and Crystal Size of Nanosized ZSM-5 Zeolite, Rev. Chem. Eng., 30(3): 289-322 (2014).
[18] Sistani S., Ehsani M.R., Kazemian H., Microwave Assisted Synthesis of Nano Zeolite Seed for Synthesis Membrane and Investigation of its Permeation Properties for H2 Separation, Iran. Chem. Chem. Eng. (IJCCE), 29(4): 99-104 (2010).
[19] Anizelli P.R., Baú J.P.T., Valezi D.F., Canton L.C., Carneiro C.E.A., Mauro E.D.,  da Costa A.C.S., Galante D., Braga A.H., Rodrigues F., Coronas J., Casado-Coterillo C., Zaia C.T.B. V., Zaia D.A.M., Adenine Interaction with and Adsorption on Fe-ZSM-5 Zeolites: A Prebiotic Chemistry Study using Different Techniques, Microporous Mesoporous Mater., 226: 493-504 (2016).
[20] Zhu Q., Yan J., Dai Q., Wu Q., Cai Y., Wu J., Wang X., Zhan W., Ethylene Glycol Assisted Synthesis of Hierarchical Fe-ZSM-5 Nanorods Assembled Microsphere for Adsorption Fenton Degradation of Chlorobenzene, J. Hazard. Mater., 385: 121581 (2019).
[21] Brandenberger S., Krocher O., Tissler A., Althoff R., The Determination of the Activities of Different Iron Species in Fe-ZSM-5 for SCR of NO by NH3, Appl. Catal. B: Envir., 95(3-4): 348-357 (2010).
[22] Motuzas J., Drobek M., Martens D.L., Vallicari C., Julbe A., da Costa J.C.D., Environmental Mineralization of Caffeine Micro-Pollutant by Fe-MFI Zeolites, Environ. Sci. Pollut. Res., 25(4): 3628-3635 (2018).
[23] Milojević-Rakić M., Dondur V., Damjanović-Vasilić L.J., Rac V., Rakić V., The Accessibility of Sites Active in the Dissociative Adsorption of Aromatic Hydrocarbons in FeZSM-5 Zeolite, Reac. Kinet. Mech. Cat., 1: 231-246 (2018).
[24] Peng Y., Zhang L., Jiang Y., Han S., Zhu Q., Meng X., Xiao F.S., Fe-ZSM-5 Supported Palladium Nanoparticles as an Efficient Catalyst for Toluene Abatement, Catal. Today, 332: 195-200 (2019).
[26] Sheng-Tao J., J-Zhong Z., Shu-Li B., Yu-Jiang G., Jun Y., Research on Fe-Loaded ZSM-5 Molecular Sieve Catalyst in High-Concentration Aniline Wastewater Treatment, Desalin. Water Treat., 57(2): 791-798 (2016).
[27] Adityosulindro S., Julcour C., Barthe L., Heterogeneous Fenton Oxidation using Fe-ZSM-5 Catalyst for Removal of Ibuprofen in Wastewater, J. Environ. Chem. Eng., 6(5): 5920-5928 (2018).
[28] Meng L., Zhu X., Hensen E.J., Stable Fe/ZSM‑5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol, ACS catal., 7(4): 2709-2719 (2017).
[30] Scherrer P., Bestimmung der Größe und der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen, Nachr. Ges. Wiss. Gottingen, 2: 98-100 (1918).
[31] Iqbal A., Sattar H., Haider R., Munir S., Synthesis and Characterization of Pure Phase Zeolite 4A from Coal Fly Ash, J. Cleaner Prod., 219: 258-267 (2019).
[32] Vichaphund S., Aht-ong D., Sricharoenchaikul V., Atong D., Effect of CV-ZSM-5, Ni-ZSM-5 and FA-ZSM-5 Catalysts for Selective Aromatic Formation from Pyrolytic Vapors of Rubber Wastes, J. Anal. Appl. Pyrolysis, 124: 733-741 (2017).
[33] Du T., Qu H., Liu Q., Zhong Q., Ma W., Synthesis, Activity and Hydrophobicity of Fe-ZSM-5@ Silicalite-1 for NH3-SCR, Chem. Eng. J., 262: 1199-1207 (2015).
[34] Lagergren S., Svenska B.K., The Theory of Adsorption on Geloester Substances, Veternskapsakad Handlingar, 24: 1-39 (1898).
[35] Ho Y.S., McKay G., Pseudo-Second Order Model for Sorption Processes, Process Biochem., 34(5): 451-465 (1999).
[36] Weber W.J., Morris J.C., Kinetics of Adsorption on Carbon from Solution, J. San. Eng. Div. ASCE, 89(2): 31-60 (1963).
[37] Langmuir I., The Adsorption of Gases on Plane Surfaces of Glass, Mica, and platinum, J. Am. Chem. Soc., 40: 1361-1403 (1918).
[38] Freundlich H., Kolloidfällung und Adsorption, Angew. Chemie., 20(18): 749-750 (1907).
[39] Dubinin M.M, Radushkevich L.V., Three-Dimensional Filling of Micropores, Proc. Acad. Sci. USSR Phys. Chem. Sect., 55: 331-340 (1947).
[40] Perrot P., A to Z of Thermodynamics, Oxford University Press on Demand, England (1998).
[42] Qi L., Teng F., Deng X., Zhang Y., Zhong X., Experimental Study on Adsorption of Hg(II) with Microwave-Assisted Alkali-Modified Fly Ash, Powder Technol., 351: 153-158 (2019).
[43] Hosseinpour M., Akizuki M., Yoko A., Oshima Y., Soltani M., Novel Synthesis and Characterization of Fe-ZSM-5 Nanocrystals in Hot Compressed Water for Selective Catalytic Reduction of NO with NH3, Microporous Mesoporous Mater., 292: 109708 (2020).
[44] Yuan E., Wu G., Dai W., Guan N., Li L., One-Pot Construction of Fe/ZSM-5 Zeolites for the Selective Catalytic Reduction of Nitrogen Oxides by Ammonia, Cat. Sci. Tech., 7: 3036-3044 (2017).
[45] Mohan N., Cindrella L., Direct Synthesis of Fe-ZSM-5 Zeolite and its Prospects as Efficient Electrode Material in Methanol Fuel Cell, Mater. Sci. Semicond. Process., 40: 361-368 (2015).
[46] Ahmad M., Raman A.A.A., Basirun W.J., Bhargava S.K., Treatment of Textile Effluent Containing Recalcitrant Dyes using MOF Derived Fe-ZSM-5 Heterogeneous Catalyst, RSC Adv., 6: 51078-51088 (2016).
[47] Katara S., Kabra S., Sharma A., Hada R., Rani A., Surface Modification of Fly Ash by Thermal Activation: A DR/FT-IR Study, Int. Res. J. Pure Appl. Chem., 3: 299-307 (2013).
[48] Garrone E., Fubini B., Bonelli B., Onida B., Area C.O., Thermodynamics of CO Adsorption on the Zeolite Na-ZSM-5 A Combined Microcalorimetric and FT-IR Spectroscopic Study, Phys. Chem. Chem. Phys., 1: 513-518 (1999).
[49] Rostamizadeh M., Jafarizad A., Gharibian S., High Efficient Decolorization of Reactive Red 120 Azo Dye Over Reusable Fe-ZSM-5 Nanocatalyst in Electro-Fenton Reaction, Sep. Purif. Technol., 192: 340-347 (2018).
[50] Jia F., Su J., Song S., Can Natural Muscovite be Expanded?, Colloid. Surface A, 471: 19-25 (2015).
[51] Thomes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S., Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87(9-10): 1051-1069 (2015).
[52] Javadian H., Ghasemi M., Ruiz M., Sastre A.M., Hosseini Asl S.M., Masomi M., Fuzzy Logic Modeling of Pb (II) Sorption onto Mesoporous NiO/ZnCl2-Rosa Canina-L Seeds Activated Carbon Nanocomposite Prepared by Ultrasound Assisted Co-Precipitation Technique, Ultrason. Sonochem., 40: 748-762 (2018).
[53] Zhao Y.W., Shen B.X., Sun H., Chemical Liquid Deposition Modified ZSM-5 Zeolite for Adsorption Removal of Dimethyl Disulfide, Industrial & Engineering Chemistry Research, 55(22): 6475-6480 (2016).
[54] Moura C.P., Vidal C.B., Barros A.L., Costa L.S., Vasconcellos L.C.G., Dias F.S., Nascimento R.F., Adsorption of BTX (Benzene, Toluene, O-Xylene, and P-Xylene) from Aqueous Solutions by Modified Periodic Mesoporous Organosilica, J. Colloid Interface Sci., 363: 626-634 (2011).
[55] Tiana H., Yuana L., Wang J., Wu H., Wang H., Xiang A., Ashoke B., Rajulud A.V., Electrospinning of Polyvinyl Alcohol into Crosslinked Nanofibers: An Approach to Fabricate Functional Adsorbent for Heavy Metals, J. Hazard. Mater., 378: 120751 (2019).
[56] Feng W., Wan Z., Daniels J., Li Z., Xiao G., Yu J., Xu D., Guo H., Zhang D., May E.F., Li G.K., Synthesis of High Quality Zeolites from Coal Fly Ash: Mobility of Hazardous Elements and Environmental Applications, J. Cleaner Prod., 202: 390-400 (2018).
[57] Javadian H., Asadollahpour S., Ruiz M., Sastre A.M., Ghasemi M., Hosseini Asl S.M., Masomi M., Using Fuzzy Inference System to Predict Pb (II) Removal from Aqueous Solutions by Magnetic Fe3O4/H2SO4-Activated Myrtus Communis Leaves Carbon Nanocomposite, J. Taiwan Inst. Chem. Eng., 91: 186-199 (2018).
[58] Szala B., Bajda T., Matusik J., Zięba K., Kijak B., BTX Sorption on Na-P1 Organo-Zeolite as a Process Controlled by the Amount of Adsorbed HDTMA, Microporous Mesoporous Mater., 202: 115-123 (2015).
[59] Bandura L., Kołodynska D., Franus W., Adsorption of BTX from Aqueous Solutions by Na-P1 Zeolite Obtained from Fly Ash, Process Saf. Environ. Prot., 109: 214-223 (2017).
[60] Vidal C.B., Raulino G.S.C., Barros A.L., Lima A.C.A., Ribeiro J.P., Pires M.J.R., Nascimento R.F., BTEX Removal from Aqueous Solutions by HDTMA-Modified Y Zeolite, J. Environ. Manage., 112: 178-185 (2012).
[61] Wołowiec M., Muir B., Zięba K., Bajda T., Kowalik M., Franus W., Experimental Study on the Removal of VOCs and PAHs by Zeolites and Surfactant-Modified Zeolites, Energ. Fuel., 31(8): 8803-8812 (2017).