Investigation of Recovery and Management Methods of Industrial Flare Gases to Return the Energy Cycle

Document Type : Review Article


1 Faculty of Chemistry, Science Campus, University of Tehran, Tehran, I.R. IRAN

2 School of Chemistry, Alborz Campus, University of Tehran, Tehran, I.R. IRAN


Due to limited resources of fossil fuels and the increasing demand of energy at global level as well as environmental pollution, optimal management of energy resources is of particular importance and plays an important role in large-scale national policy and planning. Although a significant amount of recoverable gases by the upstream oil industry, refineries, and petrochemicals are introduced into the environment via the refining process and through the flare gas emission systems. Flare gases have a very high fuel value. Meanwhile burning these gases in the flare system and their release into the environment, has environmental damages which in many cases is not compensable and leads to the imposition of high economic costs on countries. Present investigation indicated that Iran as the second largest owner of natural gas reservoir in the world produced about 9.5 trillion cubic feet of natural gas at 2017 and about 0.6 trillion cubic feet of that amount (about 6.3% of total produced natural gas) was burned in the flare systems. In this study, different methods and solutions of flare gas recovery systems are investigated in order to back into the energy cycle. In the meantime, the choice of the most appropriate technology for flare gas purification is considered as one of the most important principles of design of flare gas recovery systems. The most common methodology for utilizing flared gas in Iran is to produce liquefied petroleum gas (LPG). Also, in order to increase the exploitation of oil reservoirs, it is possible to use the gas reinjection technology. On the other hand, the use of flare gas to generate electricity at power plants, and also the use of gas to liquid conversion technology (GTL), are other suggested solutions for the management of flare gas that are still in early stages of design and implementation phase.


Main Subjects

[1] سامانه بازیافت گاز فلر، گروه نوآوری و توسعه فناوری­ های برق و انرژی، وزارت نیرو، معاونت امور برق و انرژی، دفتر برنامه­ ریزی کلان برق و انرژی (1393).
[2] ابراهیم فتح آبادی ه.، مدیریت گازهای مشعل 1 در صنایع نفت و گاز، ماهنامه علمی- ترویجی اکتشاف و تولید نفت و گاز، 103 (1392).
[3] Andersen R.D., Assembayev D.V., Bilalov R., Duissenov D., Shutemov D., "Efforts to Reduce Flaring and Venting of Natural Gas World-Wide", Norwegian University of Science and Technology, Trondheim, (2012).
[5] Emam E.A., Gas Flaring in Industry: An Overview, Petroleum & Coal, 57(5): 532-555 (2015).
[6] وهاب‌پور ا.، شجاعی م.، طهماسب‌زاده م.، رسولی ف.، بررسی آثار محیط‌زیستی گاز مشعل در ایران و اهمیت آن در راستای تعهدات کشور در توافق پاریس، مطالعه‌های راهبردی سیاستگذاری عمومی، 8: 133 تا 154 (1397).
[7] Saidi M., Heidarinejad S., Rahimpour H.R., Talaghat M.R., Rahimpour M.R., Mathematical Modeling of Carbon Dioxide Removal Using Amine-Promoted Hot Potassium Carbonate in a Hollow Fiber Membrane Contactor, Journal of Natural Gas Science and Engineering, 18: 274-285 (2014).
[9] Zhang D.-D., Wang L., Liu D., Zhao F.-Y., Wang H.-Q., Free Convective Energy Management of an Inclined Enclosure Mounted with Triple Heating Elements: Multiple Morphology Optimizations with Unique Global Energy Supply, International Journal of Heat and Mass Transfer, 115: 406-420 (2017).
[10] Eia, Country Analysis Brief: Iran, Energy Information Administration, (2018).
[11] Duck B., Reducing Emissions in Plant Flaring Operations, Hydrocarbon World, 6(1): 42-45 (2011).
[12] Ruddy D.A., Schaidle J.A., Ferrell Iii J.R., Wang J., Moens L., Hensley J.E., Recent Advances in Heterogeneous Catalysts for Bio-Oil Upgrading Via "Ex Situ Catalytic Fast Pyrolysis": Catalyst Development through the Study of Model Compounds, Green Chemistry, 16(2): 454-490 (2014).
[14] پایگاه اطلاع رسانی شرکت ملی نفت ایران، شرکت نفت در یک نگاه (1397).
[15]   BP Statistical, BP Statistical Review of World Energy, BP plc, London, UK (2017).
[16] Drilling Magazine, vol 1 (2016).
[21] Demirbas A., Alidrisi H., Balubaid M., Api Gravity, Sulfur Content, and Desulfurization of Crude Oil, Petroleum Science and Technology, 33(1): 93-101 (2015).
[23]  ابدی م.ت.، ایرانی م.، توسلی ا.، مدیریت گازهای فلر با استفاده از روش‌های بازیابی، نشریه مهندسی گاز ایران،  (1396).
[24] Zadakbar O., Vatani A., Karimpour K., Flare Gas Recovery in Oil and Gas Refineries, Oil & Gas Science and Technology-Revue de l'IFP, 63(6): 705-711 (2008).
[25] Rahimpour M.R., Jokar S.M., Feasibility of Flare Gas Reformation to Practical Energy in Farashband Gas Refinery: No Gas Flaring, Journal of hazardous materials, 209: 204-217 (2012).
[26] Davoudi M., Rahimpour M.R., Jokar S.M., Nikbakht F., Abbasfard H., The Major Sources of Gas Flaring and Air Contamination in the Natural Gas Processing Plants: A Case Study, Journal of Natural Gas Science and Engineering, 13: 7-19 (2013).
[27] Jiang P.-X., Fan M.-H., Si G.-S., Ren Z.-P., Thermal–Hydraulic Performance of Small Scale Micro-Channel and Porous-Media Heat-Exchangers, International Journal of Heat and Mass Transfer, 44(5): 1039-1051 (2001).
[28] Shafie-Pour M., Ardestani M., Environmental Damage Costs in Iran by the Energy Sector, Energy Policy, 35(9): 4413-4423 (2007).
[29]  سعیدی م.، سیاوشی ف.، تولید هیدروژن با بازیافت گاز دورریز واحد آمونیاک برای تأمین خوراک پیل سوختی اکسید جامد و کاهش گازهای گلخانه‌ای، نشریه علمی پژوهشی شیمی و مهندسی شیمی ایران، (4)36: 221 تا 237 (1396).
[30] Worldwide Look at Reserves and Production, Oil & Gas Journal, (2017).
[31] Wang X., Sun T., Yang J., Zhao L., Jia J., Low-Temperature H2S Removal from Gas Streams with SBA-15 Supported ZnO Nanoparticles, Chemical Engineering Journal, 142(1): 48-55 (2008).
[32] Bjorndalen N., Mustafiz S., Rahman M., Islam M., No-Flare Design: Converting Waste to Value Addition, Energy sources, 27(4): 371-380 (2005).
[33] Zhang K., Pang M., The Present and Future of the World’s Lng Industry, International Petroleum Economics, 13: 55-59 (2005).
[34] Gielen D., Moriguchi Y., Yagita H., CO2 Emission Reduction for Japanese Petrochemicals, Journal of Cleaner Production, 10(6): 589-604 (2002).
[35] Mourad D., Ghazi O., Noureddine B., Recovery of Flared Gas through Crude Oil Stabilization by a Multi-Staged Separation with Intermediate Feeds: A Case Study, Korean journal of chemical engineering, 26(6): 1706-1716 (2009).
[36] Anomohanran O., Thermal Effect of Gas Flaring at Ebedei Area of Delta State, Nigeria, The Pacific Journal of Science and Technology, 13(2): 555-560 (2012).
[37] Xu Q., Yang X., Liu C., Li K., Lou H.H., Gossage J.L., Chemical Plant Flare Minimization via Plantwide Dynamic Simulation, Industrial & Engineering Chemistry Research, 48(7): 3505-3512 (2009).
[38] Saidi M., Application of Catalytic Membrane Reactor for Pure Hydrogen Production by Flare Gas Recovery as a Novel Approach, International Journal of Hydrogen Energy, 43(31): 14834-14847 (2018).
[39] Abdulrahman A.O., Huisingh D., Hafkamp W., Sustainability Improvements in Egypt's Oil & Gas Industry by Implementation of Flare Gas Recovery, Journal of Cleaner Production, 98: 116-122 (2015).
[40]  Sonawat A., Samad A., Flare Gas Recovery using Ejector-A Review,  Proceedings of the Thirty Ninth National Conference on Fluid Mechanics and Fluid Power, SVNIT Surat, Gujarat, India (2012).
[42] Fisher P., Brennan D., Minimize Flaring with Flare Gas Recovery, Hydrocarbon Processing, 6(81): 83-85 (2002).
[43] Rahimpour M., Jamshidnejad Z., Jokar S., Karimi G., Ghorbani A., Mohammadi A., A Comparative Study of Three Different Methods for Flare Gas Recovery of Asalooye Gas Refinery, Journal of Natural Gas Science and Engineering, 4: 17-28 (2012).
[44] Wood D.A., Nwaoha C., Towler B.F., Gas-to-Liquids (GTL): A Review of an Industry Offering Several Routes for Monetizing Natural Gas, Journal of Natural Gas Science and Engineering, 9: 196-208 (2012).
[45] Velasco J.A., Lopez L., Velásquez M., Boutonnet M., Cabrera S., Järås S., Gas to Liquids: A Technology for Natural Gas Industrialization in Bolivia, Journal of Natural Gas Science and Engineering, 2(5): 222-228 (2010).
[46] Hassaneen A., Munack A., Ruschel Y., Schroeder O., Krahl J., Fuel Economy and Emission Characteristics of Gas-to-Liquid (GTL) and Rapeseed Methyl Ester (RME) as Alternative Fuels for Diesel Engines, Fuel, 97: 125-130 (2012).
[47] Zolfaghari M., Pirouzfar V., Sakhaeinia H., Technical Characterization and Economic Evaluation of Recovery of Flare Gas in Various Gas-Processing Plants, Energy, 124: 481-491 (2017).
[48] Heidari M., Ataei A., Rahdar M.H., Development and Analysis of Two Novel Methods for Power Generation from Flare Gas, Applied Thermal Engineering, 104: 687-696 (2016).
[49] Finko V., Finko V., Flared Gas: How to Generate Power and Utilize Combustion Products for CO2 Recovery, Digest, Gas Industry of Russia, (2006).
[50] Anosike N.B., Technoeconomic Evaluation of Flared Natural Gas Reduction and Energy Recovery Using Gas-to-Wire Scheme, Ph.D. Thesis, Cranfield University, Cranfield.:  (2013).
[51] Khanipour M., Mirvakili A., Bakhtyari A., Farniaei M., Rahimpour M.R., Enhancement of Synthesis Gas and Methanol Production by Flare Gas Recovery Utilizing a Membrane Based Separation Process, Fuel Processing Technology, 166: 186-201 (2017).
[52] عنایتی سنگسری  م.، وطنی ع.، رشتچیان د.، شبیه‌سازی و ارزیابی زیست‌محیطی سامانه بازیابی گازهای ارسالی به شبکه فلر، نشریه علمی پژوهشی مهندسی و مدیریت انرژی، 4: 30 تا 39 (1393).
[54] Allamaraju J.P., Mukherjee R., Successful Implementation of Flare Gas Recovery Systems in Gasco Plants, Society of Petroleum Engineers, (2016).
[56] Johnson M.R., Coderre A.R., Opportunities for CO2 Equivalent Emissions Reductions via Flare and Vent Mitigation: A Case Study for Alberta, Canada, International Journal of Greenhouse Gas Control, 8: 121-131 (2012).
[57] Xiong H., Pham H.N., Datye A.K., Hydrothermally Stable Heterogeneous Catalysts for Conversion of Biorenewables, Green Chemistry, 16(11): 4627-4643 (2014).
[58] Liu Z., Guan D., Wei W., Davis S.J., Ciais P., Bai J., Peng S., Zhang Q., Hubacek K., Marland G., Reduced Carbon Emission Estimates from Fossil Fuel Combustion and Cement Production in China, Nature, 524(7565): 335-338 (2015).
[59] McDaniel M., Tichenor B.A., Flare Efficiency Study, (1983).
[60] خدابنده جهرمی م.، بازیابی گازهای ارسالی به فلر و تبدیل آن‌ها به فراورده‌های پتروشیمی، پایان نامه کارشناسی ارشد، دانشگاه صنعتی شریف، تهران، ایران، (1390).
[61] Anejionu O.C., Whyatt J.D., Blackburn G.A., Price C.S., Contributions of Gas Flaring to a Global Air Pollution Hotspot: Spatial and Temporal Variations, Impacts and Alleviation, Atmospheric Environment, 118: 184-193 (2015).
[62] Ismail O.S., Umukoro G.E., Global Impact of Gas Flaring, Energy and Power Engineering, 4(04): 290 (2012).
[63] Hassan A., Kouhy R., Gas Flaring in Nigeria: Analysis of Changes in Its Consequent Carbon Emission and Reporting, Elsevier, 37(2): 124-134, (2013).
[65] Atuma M.I., Ojeh V.N., Effect of Gas Flaring on Soil and Cassava Productivity in Ebedei, Ukwuani Local Government Area, Delta State, Nigeria, Journal of Environmental Protection, 4(10): 1054 (2013).
[66] Sanchez P., "Properties and Management of Soils in the Tropics", Properties and management of soils in the tropics, John Wiley, New York, (1976).
[67] Ite A.E., Ibok U.J., Gas Flaring and Venting Associated with Petroleum Exploration and Production in the Nigeria’s Niger Delta, American Journal of Environmental Protection, 1(4): 70-77 (2013).
[68] Julius O., Thermal Gradient Due to the Gas Flared at Umusadege Marginal Oil Field, Umusadege-Ogbe Kwale Delta State, Nigeria, Archives of Applied Science Research, 3(6):  280-290 (2011).
[69] Li L., Sun T.H., Shu C.H., Zhang H.B., Low Temperature H2S Removal with 3-D Structural Mesoporous Molecular Sieves Supported ZnO from Gas Stream, Journal of Hazardous Materials, 311: 142-150 (2016).
[70] Webster M., Nam J., Kimura Y., Jeffries H., Vizuete W., Allen D.T., The Effect of Variability in Industrial Emissions on Ozone Formation in Houston, Texas, Atmospheric Environment, 41(40): 9580-9593 (2007).
[71] Egwurugwu J., Nwafor A., Oluronfemi O., Iwuji S., Alagwu E., Impact of Prolonged Exposure to Oil and Gas Flares on Human Renal Functions, Int. Res. J. Medical Sci, 1(11): 9-16 (2013).
[72]  آشنایی با فلر، مدیریت بهداشت، ایمنی و محیط‌زیست شرکت ملی پالایش و پخش (1391).
[73] شمس اردکانی.، آینده گرایی و انرژی: نقش فلرها در ساختار انرژی کشور، هفتمین همایش مدیریت سبز، تهران، ایران، (1391).
[75] Ogidiolu A., Effects of Gas Flaring on Soil and Vegetation Characteristics in Oil Producing Region of Niger Delta Nigeria, International Journal of Ecology and Environmental Dynamics, 1(1): 47-53 (2003).
[76] Hansen, J.,Sato, M., Ruedy, R., Lacis, A., Oinas, V., Global Warming in the 21st Century: An Alternative Scenario, Proceedings of the National Academy of Sciences, 97(18): 9875-9880 (2000).
[77] عاملی ف.، فرضی ف.، دبیر ب.، مدل‌سازی جذب گازهای اسیدی در محلول MDEA در کمپرسورهای حلقه - مایع با استفاده از تئوری فیلمی، دوازدهمین کنگره ملی مهندسی شیمی ایران، ( ۱۳۸۷).
[78] Buzcu-Guven B., Harriss R., Hertzmark D., Gas Flaring and Venting: Extent, Impacts and Remedies, Energy Market Consequences of an Emerging US Carbon Management Policy, Energy Forum. Houston: James A. Baker III Institute for Public Policy, Rice University, (2010).
[79] Odumugbo C.A., Natural Gas Utilisation in Nigeria: Challenges and Opportunities, Journal of Natural Gas Science and Engineering, 2(6): 310-316 (2010).
[80] Farina M., Flare Gas Reduction–Recent Global and Policy Considerations, Ge Energy Global Strat, Plan, (2010).
[81] Marouf Mashat A., Technical and Economical Feasibility Study of Using Flare Gas for Converting to Other Products in Iran, Master’s degree final Thesis, Sharif Technical University (2010).
[82] وضعیت گازهای مشعل و آسیب شناسی عدم موفقیت جمع‌آوری این گازها، اندیشکده سیاست‌های راهبردی اقتصاد و مدیریت (سرآمد) دپارتمان نفت و انرژی، (1395).
[83] Najibi H., Rezaei R., Javanmardi J., Nasrifar K., Moshfeghian M., Economic Evaluation of Natural Gas Transportation from Iran’s South-Pars Gas Field to Market, Applied Thermal Engineering, 29(10): 2009-2015 (2009).
[85] بیات ع.ر.، یوسفیان ح.، نگاهی بر چرخه و فرایندهای تولید LNG با تاکید بر مخازن نگهداری، دومین کنفرانس بین‌المللی صادرات گاز ایران، تهران (1387).
[86] خزایی س.، رضایی ب.، آل یاسین ع.، فضلعلی ع.ر.، بررسی و مقایسه کاربردی روش‌های انتقال و تبدیل گاز طبیعی بر اساس سیاست­های صنعت گاز طبیعی در ایران، اولین کنفرانس ملی CNG (1387).
[87] Eriksen R., Brandstorp J.M., Cramer E., Evaluating the Viability of Offshore Lng Production and Storage, paper presented at the GasTech Conference and Exhibition, Doha, Qatar, (2002).
[88] Marcano J., Cheung R., Monetizing Standard Natural Gas, Oil and Gas Financial Journal, 4(2): (2007).
[89] Fleisch T.H., Associated Gas Monetization Via Minigtl Conversion of Flared Gasinto Liquid Fuels and Chemicals, Global Gas Flare Reduction Partnership, (2014).
[90] Hall K.R., A New Gas to Liquids (GTL) or Gas to Ethylene (GTE) Technology, Catalysis Today, 106(1): 243-246 (2005).
[91] Schulz H., Short History and Present Trends of Fischer–Tropsch Synthesis, Applied Catalysis A: General, 186(1):  3-12 (1999).
[92] Iandoli C.L., Kjelstrup S., Exergy Analysis of a Gtl Process Based on Low-Temperature Slurry F−T Reactor Technology with a Cobalt Catalyst, Energy & Fuels, 21(4): 2317-2324 (2007).
[93] احمد خانی ع.ر.، جوان ا.، بررسی اقتصادی فناوریGTL ، نشریه انرژی ایران، 8: (1382).
[95] Dong L., Wei S.a., Tan S., Zhang H., GTL or LNG: Which Is the Best Way to Monetize “Stranded” Natural Gas?, Petroleum Science, 5(4): 388-394 (2008).
[96] کریمی م.،‌‌ هیدرات گازی، تحولی شگرف در آینده فناوری‌های تولید و انتقال گاز طبیعی، ماهنامه اکتشاف و تولید نفت و گاز، 81: 20 تا 24 (1390).
[97] Petruzzi L., Cocchi S., Fineschi F., A Global Thermo-Electrochemical Model for Sofc Systems Design and Engineering, Journal of Power Sources, 118(1):  96-107 (2003).
[98] Saidi M., Siavashi F., Rahimpour M., Application of Solid Oxide Fuel Cell for Flare Gas Recovery as a New Approach; a Case Study for Asalouyeh Gas Processing Plant, Iran, Journal of Natural Gas Science and Engineering, 17: 13-25 (2014).