Effects of the Wettability Gradient of the Flow Structure Inside a Sessile Droplet Carrying a Hydrophobic Microparticle on Solid Substrate

Document Type : Research Article

Authors

Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, I.R. IRAN

Abstract

Manipulation of microparticles by sessile droplets is important for the control of multi-step biological and industrial processes in wide range of applications e.g., in disease diagnosis, cell separation, and so on. Here, we report on the flow structure inside a sessile droplet containing a hydrophobic microparticle using many-body dissipative particle dynamics (MDPD) simulations. The droplet is actuated by a linear wettability gradient on the solid substrate to pick up, transport, and deliver a hydrophobic microparticle. For quantitative analysis, the droplet velocity at different locations was presented using a modified “quasi-stationary” post-processing method. Detailed flow structures are presented at different time sequences of high interest, such as when the droplet touches the microparticle, when the droplet starts to pick up the microparticle, when droplet transports the microparticle, and finally when droplet delivers the microparticle. Due to the existence of the microparticle, the flow structure inside the sessile droplet is significantly altered compared to the case without a presence of the microparticle inside it. More importantly, in presence of the microparticle droplet velocity follows a nonmonotonic trend. The friction between the microparticle and the substrate not only can retard the motion of the droplet, but also may cause the microparticle to be delivered. This is due to the fact that when the friction force increases, although the driving force exposed on the microparticle by the droplet is increased however its amount is limited by the cohesive attraction forces of the droplet. Hence, when the required driving force to transport the microparticle gets larger than the maximum of it provided by the droplet, the microparticle will be dropped off. More importantly, it is proved that the critical velocity for the delivery of the microparticle is mainly affected by the cohesive forces inside the droplet, not by the droplet morphology.

Keywords

Main Subjects


[1] Squires T.M., Quake S.R., Microfluidics: Fluid Physics at the Nanoliter Scale, Reviews of modern physics, 77(3): 977 (2005).
[2] Whitesides G.M., The Origins and the Future of Microfluidics, Nature, 442(7101): 368-373 (2006).
[3] آزادی‌تبار م.، برزگر ف.، غضنفری م.ح.، آنالیز پروفایل قطره نا‌متقارن روی سطوح افقی، شیب‌دار و دارای انحنا با استفاده از پردازش تصویر، نشریه علمی علوم و فناوری رنگ، (1)13: 9 تا 23 (1398).
[4] Sackmann E.K., Fulton A.L., Beebe D.J., The Present and Future Role of Microfluidics in Biomedical Research, Nature, 507(7491): 181-189 (2014).
[5] Elvira K.S., i Solvas X.C., Wootton R.C., The Past, Present and Potential for Microfluidic Reactor Technology in Chemical Synthesis, Nature chemistry, 5(11): 905-915 (2013).
[6] Neuži P., Giselbrecht S., Länge K., Huang T.J., Manz A., Revisiting Lab-on-a-Chip Technology for Drug Discovery, Nature reviews Drug discovery, 11(8): 620-632 (2012).
[7] Kruis F.E., Fissan H., Peled A., Synthesis of Nanoparticles in the Gas Phase for Electronic, Optical and Magnetic Applications—a Review, Journal of Aerosol Science, 29(5): 511-535 (1998).
[8] Kawaguchi H., Functional Polymer Microspheres, Progress in Polymer Science, 25(8): 1171-1210 (2000).
[9] Sista R.S., Eckhardt A.E., Srinivasan V., Pollack M.G., Palanki S., Pamula V.K., Heterogeneous Immunoassays using Magnetic Beads on a Digital Microfluidic Platform, Lab on a Chip, 8(12): 2188-2196 (2008).
[10] Shah G.J., Veale J.L., Korin Y., Reed E.F., Gritsch H.A., Specific Binding and Magnetic Concentration of CD8+ T-Lymphocytes on Electrowetting-on-Dielectric Platform, Biomicrofluidics, 4(4): 044106 (2010).
[11] Ng A.H., Choi K., Luoma R.P., Robinson J.M., Wheeler A.R., Digital Microfluidic Magnetic Separation for Particle-Based Immunoassays, Analytical chemistry, 84(20): 8805-8812 (2012).
[12] Witters D., Knez K., Ceyssens F., Puers R., Lammertyn J., Digital Microfluidics-Enabled Single-Molecule Detection by Printing and Sealing Single Magnetic Beads in Femtoliter Droplets, Lab on a Chip, 13(11): 2047-2054 (2013).
[13] Vergauwe N., Vermeir S., Wacker J.B., Ceyssens F., Cornaglia M., Puers R., Gijs M.A., Lammertyn J., Witters D., A Highly Efficient Extraction Protocol for Magnetic Particles on a Digital Microfluidic Chip, Sensors and Actuators B: Chemical, 196: 282-291 (2014).
[14] Gijs M.A., Magnetic Bead Handling on-Chip: New Opportunities for Analytical Applications, Microfluidics and Nanofluidics, 1(1): 22-40 (2004).
[15] Gijs M.A., Lacharme F., Lehmann U., Microfluidic Applications of Magnetic Particles for Biological Analysis and Catalysis, Chemical reviews, 110(3): 1518-1563 (2009).
[16] van Reenen A., de Jong A.M., den Toonder J.M., Prins M.W., Integrated Lab-on-Chip Biosensing Systems based on Magnetic Particle Actuation–a Comprehensive Review, Lab on a Chip, 14(12): 1966-1986 (2014).
[17] Zhao Y., Cho S.K., Microparticle Sampling by Electrowetting-Actuated Droplet Sweeping, Lab on a Chip, 6(1): 137-144 (2006).
[18] Tan M.K., Friend J.R., Yeo L.Y., Microparticle Collection and Concentration Via a Miniature Surface Acoustic Wave Device, Lab on a Chip, 7(5): 618-625 (2007).
[19] Jönsson-Niedziółka M., Lapierre F., Coffinier Y., Parry S., Zoueshtiagh F., Foat T., Thomy V., Boukherroub R., EWOD Driven Cleaning of Bioparticles on Hydrophobic and Superhydrophobic Surfaces, Lab on a Chip, 11(3): 490-496 (2011).
[20] Cho S.K., Zhao Y., Concentration and Binary Separation of Micro Particles for Droplet-Based Digital Microfluidics, Lab on a Chip, 7(4): 490-498 (2007).
[21] Kinoshita H., Kaneda, S.; Fujii, T.; Oshima, M., Three-Dimensional Measurement and Visualization of Internal Flow of a Moving Droplet Using Confocal Micro-PIV. Lab on a Chip, 7(3): 338-346 (2007).
[22] Lu, H.-W., Bottausci F., Fowler J.D., Bertozzi A.L., Meinhart C., A Study of EWOD-Driven Droplets by PIV Investigation, Lab on a Chip, 8(3): 456-461 (2008).
[23] Ma S., Sherwood J.M., Huck W.T., Balabani S., On the Flow Topology Inside Droplets Moving in Rectangular Microchannels, Lab on a Chip, 14(18): 3611-3620 (2014).
[25] Warren P., Vapor-Liquid Coexistence in Many-Body Dissipative Particle Dynamics, Physical Review E, 68(6): 066702 (2003).
[26] Liu M., Meakin P., Huang, H., Dissipative Particle Dynamics with Attractive and Repulsive Particle-Particle Interactions, Physics of Fluids, 18(1): 017101 (2006).
[27] Tiwari A., Abraham J., Dissipative-Particle-Dynamics Model for Two-Phase Flows, Physical Review E, 74(5): 056701 (2006).
[28] Cupelli C., Henrich B., Glatzel T., Zengerle R., Moseler M., Santer M., Dynamic Capillary Wetting Studied with Dissipative Particle Dynamics, New Journal of Physics, 10(4): 043009 (2008).
[29] Li Z., Hu G.-H., Wang Z.-L., Ma Y.-B., Zhou Z.-W., Three Dimensional Flow Structures in a Moving Droplet on Substrate: A Dissipative Particle Dynamics Study, Physics of Fluids, 25(7): 072103 (2013).
[30] Wang Y., Chen S., Numerical Study on Droplet Sliding Across Micropillars, Langmuir, 31(16): 4673-4677 (2015).
[31] Pal S., Lan C., Li Z., Hirleman E.D., Ma Y., Symmetry Boundary Condition in Dissipative Particle Dynamics, Journal of Computational Physics, 292: 287-299 (2015).
[32] Ahmadlouydarab M., Lan C., Das A.K., Ma Y., Coalescence of Sessile Microdroplets Subject to a Wettability Gradient on a Solid Surface, Physical Review E, 94(3): 033112 (2016).
[33] Lan C., Pal S., Li Z., Ma Y., Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles, Langmuir, 31(35): 9636-9645 (2015).
[34] Clark A.T., Lal M., Ruddock J.N., Warren P.B., Mesoscopic Simulation of Drops in Gravitational and Shear Fields, Langmuir, 16: 6342 (2000).
[35] Jones J.L., Lal M., Ruddock J.N., Spenley N., Dynamics of a Drop at a Liquid/Solid Interface in Simple Shear Fields: A Mesoscopic Simulation Study, Faraday Discuss, 112: 129 (1999).
[36] Louis A.A., Bolhuis P.G., Hansen J.P., Mean-Field Fluid Behavior of the Gaussian Core Model, Physical Review E, 62: 7961 (2000).
[37] Rao Q., Xia Y., Li J., McConnell J., Sutherland J., Li Z., A Modified Many-Body Dissipative Particle Dynamics Model for Mesoscopic Fluid Simulation: Methodology, Calibration, and Application for Hydrocarbon and Water, Molecular Simulation, 47: 363-375 (2021).
[38] Hemeda A.A., Pal S., Mishra A., Torabi M., Ahmadlouydarab M., Li Z., Palko J., Ma Y., Effect of Wetting and Dewetting Dynamics on Atomic Force Microscopy Measurements, Langmuir, 35: 13301-13310 (2019).
[39] Ahmadlouydarab M., Hemeda A.A., Ma Y., Six Stages of Microdroplet Detachment from Microscale Fibers, Langmuir, 34: 198-204 (2018).
[40] Pagonabarraga I., Frenkel D., Dissipative Particle Dynamics for Interacting Systems, J. Chem. Phys., 115: 5015 (2001).
[41] Nugent S., Posch H.A., Liquid Drops and Surface Tension with Smoothed Particle Applied Mechanics, Phys. Rev. E, 62: 4968 (2000).
[42] Warren P.B., Vapor-Liquid Coexistence in Many-Body Dissipative Particle Dynamics, Phys. Rev. E, 68: 066702 (2003).
[43] Trofimov Y., Nies E.L.F., Michels M.A.J., Constant-Pressure Simulations with Dissipative Particle Dynamics, J. Chem. Phys., 123: 144102 (2005).
[44] Groot R.D., Warren P.B., Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation, Journal of Chemical Physics, 107(11): 4423-4435 (1997).
[45] Espanol P., Warren P., Statistical Mechanics of Dissipative Particle Dynamics, EPL (Europhysics Letters), 30(4): 191-196 (1995).
[46] Fan H., Striolo A., Nanoparticle Effects on the Water-Oil Interfacial Tension, Physical Review E, 6(5): 051610 (2012).
[48] Hardin R.H., Sloane N.J.A., Smith W.D., Tables of Spherical Codes with Icosahedral Symmetry, Published Electronically at http://NeilSloane.com/icosahedral.codes/.  
[49] Johnson K., Kendall K., Roberts A., Surface Energy and the Contact of Elastic Solids, Proceedings of the royal society of London. A. mathematical and physical sciences, 324(1558): 301-313 (1971).
[50] Kim J.M., Phillips R.J., Dissipative Particle Dynamics Simulation of Flow around Spheres and Cylinders at Finite Reynolds Numbers, Chemical engineering science, 59(20): 4155-4168 (2004).
[51] Chen S., Phan-Thien N., Khoo B.C., Fan X.J., Flow around Spheres by Dissipative Particle Dynamics, Physics of Fluids, 18(10): 103605 (2006).
[52] Yao X., Bai H., Ju J., Zhou D., Li J., Zhang H., Yang B., Jiang L., Running Droplet of Interfacial Chemical Reaction Flow, Soft Matter, 8(22): 5988-5991 (2012).
[53] Bliznyuk O., Seddon J.R., Veligura V., Kooij E.S., Zandvliet H.J., Poelsema B., Directional Liquid Spreading Over Chemically Defined Radial Wettability Gradients, ACS applied materials & interfaces, 4(8): 4141-4148 (2012).
[54] Xu X., Qian T., Droplet Motion in One-Component Fluids on Solid Substrates with Wettability Gradients, Physical Review E, 85(5): 051601 (2012).
[55] Moumen N., Subramanian R.S., McLaughlin J.B., Experiments on the Motion of Drops on a Horizontal Solid Surface Due to a Wettability Gradient. Langmuir, 22(6): 2682-2690 (2006).
[56] Visser D., Hoefsloot H., Iedema P., Comprehensive Boundary Method for Solid Walls in Dissipative Particle Dynamics, Journal of Computational Physics, 205(2): 626-639 (2005).
[57] Subramanian R.S., Moumen N., McLaughlin J.B., Motion of a Drop on a Solid Surface Due to a Wettability Gradient, Langmuir, 21(25): 11844-11849 (2005).
[58] Ahmadlouydarab M., Feng J.J., Motion and Coalescence of Sessile Drops Driven by Substrate Wetting Gradient and External Flow, Journal of Fluid Mechanics, 746: 214-235 (2014).