Effect of pH and Heat Treatment on the Characteristics of Ni-P-GO Nanostructured Composite Coating on AZ31D Alloy

Document Type : Research Article

Authors

Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, I.R. IRAN

Abstract

In the present study, Ni-P-GO nanocomposite coating with different pH values of path was applied on the AZ31D alloy by electroless. After coating, heat treatment was performed at 400°C for 1 h. The results of microstructural investigations by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) showed that the coating with semi-amorphous structure and cauliflower morphology was formed on the surface of the substrate. According to the EDS results, with the increase in the pH of the electroless bath, the amount of phosphorus coating and absorption of graphene oxide (GO) nanosheets increased. After the heat treatment, maintaining the morphology and growth of colonies, the coating was completely crystallized and nickel phosphide compounds such as Ni2P, Ni3P and Ni5P3 were formed, which increased the hardness. The microhardness test results showed that the hardness and toughness of the coating decreases with the increase of phosphorus. By heat treatment, the maximum hardness reached 1151 H.v. and the toughness decreased to 2.3 (MPa/√m). The results of the polarization test showed that the coating leads to an increase in the corrosion resistance of the substrate and a decrease in the corrosion density up to 0.443 µA/cm². Although heat treatment led to a decrease in corrosion resistance compared to before. Also, increasing the phosphorus of matrix to increase the density of the hypophosphite layer and absorb more GO leads to an increase in corrosion resistance.

Keywords

Main Subjects


[1] Buchtík M., Krystýnová M., Másilko J., Wasserbauer J., The Effect of Heat Treatment on Properties of Ni–P Coatings Deposited on A AZ91 Magnesium Alloy, Coat, 9: 461-469 (2019).
[2] Sahoo P., Kalyan Das S., Tribology of Electroless Nickel Coatings – A Review, Mate. Design, 32: 1760-1775 (2011).
[3] Farzaneh A., Mohammadi M., Ehteshamzadeh M., Mohammadi F., Electrochemical and Structural Properties of Electroless Ni–P–SiC Nanocomposite Coatings, Appl. Sur. Sci., 276: 697-704 (2013).
[4] Weigang L.Y., Zhao H.X., Preparation and Characterization of Ni–P–NanoTiN Electroless Composite Coatings, J. Alloy. Compnd., 509: 4154-4159 (2011).
[5] Makkar P., Agarwala R.C., Agarwala V., Chemical Synthesis of TiO2 Nanoparticles and Their Inclusion in Ni–P Electroless Coatings, Ceram. Inter., 39: 9003-9008 (2013).
[6] Alishahi M., Monirvaghefi S.M., Saatchi A., Hosseini S.M., The Effect of Carbon Nanotubes on the Corrosion and Tribological Behavior of Electroless Ni–P–CNT Composite Coating, Appl. Surf. Sci., 258: 2439-2446 (2012).
[7] Hasani R., Tahmasebi K., Ehteshamzadeh M., Soroushian S., The Effect of CFO Nanoparticles on Magnetic and Erosion-Corrosion Behavior of CFO@Ni–P Nanocomposite Coating, Adva. Powder. Technol., 31: 827-834 (2020).
[8] Ahmadkhaniha D., Mahboubi F., Effects of Conventional and Active Screen Plasma Nitriding on Properties of Electroless Ni–B Coating, J. Mater. Sci. Technol., 28: 680-684 (2012).
[9] Wang Q.Y., Xi Y.C., Xu J., Liu S., Lin Y.H., Zhao Y.H., Bai, S.L., Study on Properties of Double–Layered Ni–P–Cr Composite Coating Prepared by the Combination of Electroless Plating and Pack Cementation, J. Alloy. Compnd., 729: 787-795 (2017).
[12] Wu H., Liu F., Gong W., Ye F., Hao L., Jiang J., Han S., Preparation of Ni–P–GO Composite Coatings and its Mechanical Properties, Surf. Coat. Technol., 27: 25-32 (2015).
]13 [شمشیری نوقابی ا.، احتشامزاده م.، سروشیان س.، بررسی رفتار خوردگی و سایشی پوشش­ های الکترولس نیکل فسفر/اکسید گرافن، فصلنامه علوم و مهندسی خوردگی، 13: 19 تا 28 (1396).
[14] Liu C., Wei D., Huang X., Mai Y., Zhang L., Jie X., Electrodeposition of Co–Ni–P/Graphene Oxide composite coating with enhanced wear and corrosion resistance, Int. J. Mater. Res., 34: 1726-1733 (2019).
]16[ شجری ی.، سیدرئوفی ز.س.، مومن بغداد آباد د.، شماخی ح.، حسینی نجف آبادی م.، اثر دمای عملیات گرمایی بر مقاومت به سایش پوشش نیکل– بور روی آلیاژ C63200 اعمالی به روش الکترولس، فصلنامه علمی پژوهشی مواد و فناوری­های پیشرفته، 8: 55 تا 64 (1398).
[17] Oraon B., Majumdar G., Ghosh B., Improving Hardness of Electroless Ni–B Coatings Using Optimized Deposition Conditions and Annealing, Mater. Design., 29: 1412-1418 (2008).
[18] Samiee M., Seyedraoufi Z.S., Shajari Y., Dry and Wet Wear Characteristic of TiO2 Thin Film Prepared by Magnetic Sputtering in Ringer Solution, Adv. Ceram. Prog., 5: 30-37 (2019).
]19[ زنگنه مدار ک.، اشرفی­زاده ف.ا.، منیر واقفی س.م.، ارایه معادله ریاضی چقرمگی شکست پوشش­های نیکل– فسفر تابع ضخامت بر اساس داده­های آزمایشگاهی، علوم و مهندسی سطح، 8: 69 تا 77 (1388).
[21] Bozzini B., Fracture Toughness of Supported Ni-P Films Prepared by Autocatalytic Chemical Deposition, Zeitschrift fuer Metallkunde, 88: 493-497 (1997).
[22] Lin J.D., Duh J.G., Fracture Toughness and Hardness of Ceria- And Yttria-Doped Tetragonal Zirconia Ceramics, Mater. Chem. Phys., 78: 253-261 (2002).
[23] Lima M.M., Godoy C., Toughness Evaluation of HVOF WC-Co Coatings Usings Non-Linear Regression Analysis, Mater. Sci. Eng., 357: 337-345 (2003).
]24[ اشتری لرکی م.، منشی ا.، بررسی ریخت‌شناسی سطح، اندازه دانه و اثر pH بر پوشش نانو کامپوزیتی نیکل- فسفر با ذره‌ها اکسید سیلیسیم به روش الکترولس بر روی فولاد X80، همایش بین المللی پژوهش­های مهندسی شیمی و مواد، تهران، ایران (1395).
[25] Fundo A.M., Abrantes L.M., The Electrocatalytic Behaviour of Electroless Ni–P Alloys, J. Electroanal, Chem., 600: 63-79 (2007).
[26] Moniruzzaman M., Roy S., Effect of pH on Electroless Ni–P Coating of Conductive and Non-Conductive Materials, Inter. J. Automo. Mech. Eng., 4: 481-489 (2011).
[27] Czagany M., Baumli M., Effect of pH on the Characteristics of Electroless Ni–P Coatings, J. Min. Metall. Sec. B., 53: 20-22 (2017).
[28] Shajari Y., Porhonar M., Seyedraoufi Z.S., Razavi S.H., Momen Baghdadabad D., Yousefnia H., Farahani M., Improvement of the NiBrAl Casting Alloy Surface Properties by Electroless Ni–B Plating for Dynamic Marine Applications, Phys. Mesomech., 23: 81-88 (2020).
[29] Shajari Y., Alizadeh A., Seyedraoufi Z.S., Razavi S.H., Shamakhi H., The Effect of Heat Treatment on Wear Characteristics of Nanostructure Ni–B Coating on Marine Bronze, Mater, Res. Exp., 6: 105040 (2019).
[30] Fu X.Q., Shi X.X., Duan S.L., Shen M.Q., Lin J.R., Jiang M.J., Studies on the Wear and Corrosion Resistance of Ni–Fe–Co–P–GO Composite coating Prepared by Scanning Electrodeposition, Int. J. Electrochem. Sci., 15: 6448-6463 (2020).
[31] Chen J., Zou Y., Matsuda K., Zhao G., Effect of Cu Addition on Themicrostructure, Thermal Stability, and Corrosion Resistance ofNi–P Amorphous Coating, Mater. Let., 191: 214-217 (2017).
[33] Mu S., Li N., Li D., Xu L., Corrosion Behavior and Compositionanalysis of Chromate Passive Film on Electroless Ni–P Coating, Appl. Surf. Sci., 256: 4089-4094 (2010).
[34] Shakoor R.A., Kahraman R., Gao W., Wang Y., Synthesis Characterization and Applications of Electroless Ni-B Coatings-A Review, Inter. J. Electrochem, Sci., 11: 2486-2512 (2016).
[37] Sensen H., Qingshi M., Zhe Q., Amr O., Rui C., Yin Y., Tianqing L., Sherif A.,Mechanical Toughness and Thermal Properties of 2D Material- Reinforced Epoxy Composites, Polymer., 148: 121884 (2019).
]38[ تفضلی م.، منیر واقفی س.م.، صالحی م.، بررسی تاثیر عملیات گرمایی بر سختی و رفتار خوردگی پوشش الکترولس نیکل-فسفر روی آلیاژ AZ31 منیزیم، علوم و مهندسی سطح، 7: 25 تا 31 (1390).
]39[ حاجی­زاده ماهانی ن.، احتشام­زاده م.، طهماسبی ک.، تاثیر عملیات گرمایی بر رفتار خوردگی سایشی پوشش های نیکل فسفر بر زیرلایه مس- نیکل 90/10، هفتمین کنفرانس بین‌المللی مهندسی مواد و متالورژی و دوازدهمین همایش ملی مشترک انجمن مهندسی متالورژی و مواد ایران و انجمن ریخته گری ایران، تهران، ایران (1397).
[40] Elsener B., Crobu M., Scorciapino M.A., Rossi A., Electroless Deposited Ni-P alloys, Corrosion Resistance Mechanism, J. Appl. Electrochem., 38: 1053-1060 (2018).
[42] Kundu S., Das S.K., Sahoo P., Properties of Electroless Nickel at Elevated Temperature-a Review, Proced. Eng., 97: 1698-1706 (2014).
]43[ فرشود آ.، امینی ک.، امامی ا.ح.، بررسی تاثیر افزودن سولفات مس بر ویژگی‌های و مقاومت به خوردگی پوشش الکترولس نیکل-فسفر، مجله مواد نوین، (4)6: 1 تا 12 (1395).
[44] Ashassi-Sorkhabi H., Rafizadeh S.H., Effect of Coating Time and Heat Treatment on Structures and Corrosion Characteristics of Electroless Ni–P Alloy Deposits, Surf. Coat. Technol., 176: 318-326 (2014).
[45] Zhao G., Zou Y., Jinwen S., Kenji M., Zengda Z., Jie C., Electrochemical Behavior and Compositions of Passive Films of Amorphous Ni–P Coating in Acidic Environment, Inte. J. Electrochem. Sci., 11: 140-153 (2016).
]46[ طباطبائی ف.، رئیسی ک.، ساعتچی ا.، اورگان م.، رفتار تریبوخوردگی پوشش‌های بی شکل و نانو ساختار الکترولس نیکل – فسفر، نشریه علوم و مهندسی سطح، 20: 55 تا 65 (1393).
[48] Chen J., Zou Y., Matsuda K., Zhao G., Effect of Passivation Potential on Passive Behavior and Corrosion Resistance of Ni–Cu–P Amorphous Coating in Alkaline Solution, J. Appl. Electroche., 12: 1348-1361 (2017).
[49] Rabizadeh T., Allahkaram S.R., Zarebidaki A., An Investigation on Effects of Heat Treatment on Corrosion Properties of Ni–P Electroless Nano–Coatings, Mater. Design., 31: 3174-3179 (2010).
[50] Chen B.H., Hong L., Ma Y., Ko T.M., Effects of Surfactants in an Electroless Nickel–Plating Bath on the Properties of Ni−P Alloy Deposits, Ind. Eng. Chem. Research., 41: 2668-2678 (2002).
[51] AlZahrani A., Alhamed Y., Petrov L., Armyanov S., Valova E., Georgieva J., Dille J., Mechanical and Corrosion Behavior of Amorphous and Crystalline Electroless Ni–W–P Coatings, J. Solid. Stat. Electrochem., 18: 1951–1961 (2014).
]52[ خجسته نژاد م.، سیدرئوفی ز.س.، بختیاری ز.، رازقی خ.، شجری ی.، عبایی م.، ارتقاء مقاومت به خوردگی لوله­ های مسی کوره­های قوس الکتریک با استفاده از پوششNi-P، سمپوزیوم فولاد، کیش، ایران (1397).
[53] Panja B., Sahoo P., Tribo-Corrosion Behavior of Electroless Ni-P Coatings in Alkaline Corrosive Environment, Port. Electrochem. Acta., 32: 303-313 (2014).