Experimental investigation of synthetic graphene oxide-Hexamethyldisilazane nanofluid injection to improve oil recovery

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

2 Department of Petroleum Engineering, Research Institute of petroleum Industry, Tehran, Iran

3 Islamic Azad University, Kermanshah, Iran

Abstract

One of the effective methods in the process of enhanced recovery of oil reservoirs is applying the nanotechnology to alter the wettability of the reservoir rock. In this study, the wettability alteration was investigated using synthetic graphene oxide-Hexamethyldisilazane (GO-HMDS). For this purpose, XRD and FTIR analyzes were used to identify the synthesized structure. In the present study, the effect of concentration (0.05, 0.1 and 0.2 wt% GO-HMDS) were investigated using the zeta potential analysis, Interfacial Tension (IFT), and contact angle. Subsequently, the concentration of 0.2% was determined as a powerful sample in altering the wettability of the reservoir rock through the zeta potential analysis. This sample was used for tests of contact angle and interfacial tension. In addition the zeta potential of the sample was measured by -36 mv. Moreover, the contact angle between the reservoir rock and the graphene oxide- (Hexamethyldisilazane) solution for 0.2 wt.% GO-HMDS solution decreased from 161 to 44 degrees. On the other hand, it is in agreement the results of the zeta potential and Interfacial Tension (IFT) examines. Therefore, the synthesized nanofluid reduces the and Interfacial Tension (IFT), contact angle, and wettability alteration toward the water-wet of the carbonate core.

Keywords

Main Subjects