Adsorption of Cyanide Anion from Aqueous Solutions using Nanosorbent Zeolite Clinoptilolite

Document Type : Research Article

Authors

1 Department of Chemistry, Faculty of Sciences, Yazd University, Yazd, I.R. IRAN

2 Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Center, AREEO, Yazd, I.R. IRAN

3 Department of Physic, Faculty of Sciences, Yazd University, Yazd, I.R. IRAN

Abstract

Cyanide is one of the toxins and different ways to reduce it have been studied. These include ozone oxidation methods, ultraviolet radiation degradation, alkaline chlorination, and hydrogen peroxide degradation. Each of these methods has various disadvantages and advantages, but among them, surface adsorption is an effective and efficient method. On the other hand, zeolites, which are crystalline aluminosilicate and juicy alkali and alkaline earth metals, have the ability to absorb cations and anions. To prepare a cyanide solution, it was used sodium cyanide salt based on the standard method In this work, it has been studied the adsorption of cyanide ion from aqueous solutions using zeolite nanoparticles and the factors affecting on it. In this study, the factors of the effect of the initial pH of the solution, the effect of the initial concentration of the solution, the effect of the adsorbent amount, the effect of the contact time and the effect of temperature on the surface adsorption of cyanide ions with the nano-adsorbent zeolite clinoptilolite were investigated. And after the studies, the optimal and appropriate values for each of the effective parameters pH=6, contact time 40 min, adsorbent dosage 1g/l, temperature 22°C and initial concentration of 150 mg/l. Under these optimal conditions, the highest percentage of anion cyanide uptake was obtained on the nano-adsorbent of zeolite clinoptilolite 85%. The relationship between empirical data and the equation of Langmuir, Freundlich and Tamkin equations was also investigated. The R2 values for Langmuir, Frondelich, and Temkin's alliances were 0.8337, 0.9837, and 0.99, respectively, indicating that there was a greater match between the experimental data and the Temkin temperature than the other two.

Keywords

Main Subjects


[1] Hasan S.H., Srivastava P., Batch and Continuous Biosorption of Cu2+ by Immobilized Biomass of Arthrobacter sp., Journal of Environmental Management, 90: 3313-3321 (2009).  
[2] Malakootian M., Yousefi N., Fatehizadeh A., Survey Efficiency of Electrocoagulation on Nitrate Removal from Aqueous Solution, Journal of Environmental Science & Technology, 8: 107-114 (2011).
[3] Muthukumaran K., Beulah S., Removal of Chromium (VI) from Wastewater Using Chemically Activated Syzygium Jambolanum Nut Carbon by Batch Studies, Journal of Procedia Environmental Sciences, 4: 266-280 (2011).
[4] Mahvi A.H., Mohammadi M.J., Vosoughi M., Zahedi A., Hashemzadeh B., Asadi A., Pourfadakar S., Sodium Dodecyl Sulfate Modified-zeolite as a Promising Adsorbent for the Removal of Natural Organic Matter from Aqueous Environments,  Journal of Health Scope, 5: 11-18 (2016).
[5] Fu F., Wang Q., Removal of Heavy Metal Ions from Wastewaters: A Review, Journal of Environmental Management, 92: 407-418 (2011).
[6] Moussavi G., Majidi F., Farzadkia M., Influence of Operational Parameters on Elimination of Cyanide from Wastewater Using the Electrocoagulation Process, Journal of Desalination, 280: 127-133 (2011).
[7] Parga J.R., Vázquez V., Casillas H.M., Valenzuela J.L., Cyanide Detoxification of Mining Wastewaters with TiO2 Nanoparticles and its Recovery by Electrocoagulation, Journal of Chemical Engineering & Technology, 32: 1901-1908 (2009).
[8] Dash R.R., Gaur A, Balomajumder C., Cyanide in Industrial Wastewaters and its Removal: A Review on Biotreatment, Journal of Hazardous Materials, 163: 1-11 (2009).
[9] Liu Y., Ai K., Cheng X., Huo L., Lu L., Gold‐nanocluster‐based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water, Journal of Advanced Functional Materials, 20: 951-956 (2010).
[11] Han B, Shen Z, Wickramasinghe S.R., Cyanide Removal from Industrial Wastewaters Using Gas Membranes, Journal of membrane science, 257: 171-181 (2005).
[12] Gupta N., Balomajumder C., Agarwal V.K., Adsorption of Cyanide Ion on Pressmud Surface: A Modeling Approach. Journal of Chemical Engineering, 191: 548-556 (2012).
[13] Alver E., Metin, A. Ü., Anionic Dye Removal from Aqueous Solutions Using Modified Zeolite: Adsorption Kinetics and Isotherm Studies, Journal of Chemical Engineering, 15: 59-67 (2012).
[14] Chlopecka, A. and Adriano, D. C., Influence of Zeolite, Apatite and Fe-oxide on Cd and Pb Uptake by Crops, Journal of Science the Total Environment, 207: 195-206 (1997).
[15] Zorpas, A.A., Constantinides, T., Vlyssides, A.G., Haralambous, I., and Loizidou, M., Heavy Metal Uptake by Natural Zeolite and Metals Partitioning in Sewage Sludge Compost, Journal of Bioresource Technology, 72: 113-119 (2000).
[16] Kurama H., Çatalsarik T., Removal of Zinc Cyanide from a Leach Solution by an Anionic Ion-exchange Resin, Journal of Desalination, 129: 1-6 (2000).
[17] Adams M., Lloyd V., Cyanide Recovery by Tailings Washing and Pond Stripping, Journal of Minerals Engineering, 21: 501-508 (2008).
[18] سمیعی بیرق ع.، خدادادی ا.، عبدالهی م.، مشکینی م.، بررسی فرایند حذف سیانید از آب سد باطله کارخانه فرآوری طلای آقدره ـ تکاب با استفاده از کانی تالک، نشریه شیمی و مهندسی شیمی ایران، (3)31: 21 تا 32 (1391).
[19] مرجانی ا.، عبدالی ن.، حذف یون‌های روی و مس با زئولیت‌ها: مطالعه شبیه‌سازی دینامیکی مولکولی، نشریه شیمی و مهندسی شیمی ایران، (2)39: 1 تا 7 (1399).
[20] APHA AWWA, “WWF, Standard Methods for the Examination of Water and Wastewater”, Washington. D.C, (2005).
[21] Nascimento M., Soares P.S.M., Souza V.P., Adsorption of Heavy Metal Cations Using Coal Fly Ash Modified by Hydrothermal Method, Journal of Fuel,  88: 1714-1719 (2009).
] 23 [اله ابدی ا.، رحمانی ثانی ا.، ساقی م.ح.، بهروزی خواه ح.، صادقی ش.، بهروزی خواه م.ر.، بررسی حذف سیانید از زائدات خطرناک با استفاده از نانوذره‌های آهن، مجله علمی - پژوهشی دانشگاه علوم پزشکی سبزوار، (1)26: 63 تا 71 (1398).
] 24[ نوروزی ر.، نوری سپهر م.، ضرابی م.، جذب سیانید از محیط‌های آبی با استفاده از نانوذره‌های هیدروکسی آپاتیت مغناطیسی سنتز شده به روش هیدروترمال: مطالعه سینتیک و ثابت های تعادل، سلامت و بهداشت، (۴)5: ۲۷۵-۲۸۸ (۱۳۹۳).
[25] Naeem S., Zafar U., Adsorption Studies of Cyanide (CN) on Alumina, Pakistan Journal of Analytical & Environmental Chemistry10(1): 83-87 (2009).
] 26[ سمیعی ع.، خدادادی ا.، عبداللهی م.، بررسی جذب سیانید بر روی کربن فعال از آب سد باطله کارخانه فراوری طلای آقدره تکاب، دهمین کنگره ملی مهندسی شیمی ایران، زاهدان (1384).
[27] Barakat M.A., Chen Y.T., Huang C.P., Removal of Toxic Cyanide and Cu (II) Ions from Water by Illuminated TiO2 Catalyst, Applied Catalysis B: Environmental53(1): 13-20 (2004).