Synthesis of Montmorillonite Modified with Hexadecyltrimethylammonium Bromide (HDTMA-Br) as an Efficient Adsorbent for Treatment of Oilfield Produced Water

Document Type : Research Article

Authors

Faculty of Chemistry and Chemical Engineering, University of Guilan, Rasht, I.R. IRAN

Abstract

In this study, montmorillonite modified by the hexadecyltrimethylammonium bromide (HDTMA-Br) was prepared by the reaction of the sodium montmorillonite with HDTMA-Br surfactant. The adsorbent structure was characterized using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), power-spectral-density (PSD), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. Then, the efficiency of synthetized adsorbent was investigated for the removal of the chemical oxygen demand reduction (COD), biological oxygen demand (BOD), suspended solids (TSS), oil and grease and turbidity of the oilfield produced water. The exchange capasity was obtained 200 % for modified montmorillonite. The maximom of COD reduction was resulted 92.04 % at optimal conditions with the adsorbent dosage 0.3 g, pH = 7, and contact time 45 min. The advantages of this method are cheapness, safety, and reusability of the adsorbent, short time treatment, high adsorption capacity, easy separation of the adsorbent from the reaction medium.

Keywords

Main Subjects


[1] حقیقی‌فرد جعفرزاده ن.ا.، فرهنگ م.، آلودگی دریا، انتشارات آوای قلم، (1385).
[2] دانشفر م.ا.، ارجمند م.، پهلوان زاده ح.، قدمی ا.، قدم ج.، بررسی و انتخاب سیستم مناسب تصفیه آب تولیدی همراه نفت برای استفاده در سکوهای نفتی، ماهنامه علمی- ترویجی اکتشاف و تولید نفت و گاز، 114: 52 تا 61 (1393).
[5] Padervand M., Salari H., Ahmadvand S.S., Gholam M.R., Removal of an Organic Pollutant from Waste Water by Photocatalytic Behavior of AgX/TiO2 Loaded on Mordenite Nanocrystals, Res. Chem. Intermed., 38: 1975–1985 (2012).
[7] Padervand M., Lichtfouse E., Didier Robert Wan C., Removal of Microplastics from the Environment. A Review, Environ. Chem. Lett., 18: 807–828 (2020).
[8] Padervand M., Tasviri M., Gholam M.R., Effective Photocatalytic Degradation of an Azo Dye over Nanosized Ag/AgBr-Modified TiO2 Loaded on Zeolite, Chem. pap., 65: 280–288 (2011).
[10] پادروند م.، جلیلیان ا.، فوتوکاتالیست دوتایی صفحه‌ای شکل AgBr-Bi24Br10O31 با فعالیت بالا تحت نور مرئی، شیمی و مهندسی شیمی ایران، 38: 77-83 (1398).
[11] پادروند م.، الهی فرد م.ر.، ساختارهای اصلاح شده هسته (مغناطیس) ـ لایه (زئولیتی) با قابلیت حذف یون‌های فلزهای سنگین از پساب‌ها، شیمی و مهندسی شیمی ایران، (1)37: 125-131 (1397).
[12] Fakhru’l-Razi A., Pendashteh A., Chuah Abdullah L., Radiah Awang Biak D., Siavash Madaeni S., Zainal Abidin Z., Review of Technologies for Oil and Gas Produced Water Treatment, J. Hazard. Mater., 170: 530-551 (2009).
[13] McBride M.B., Pinnava I.J., Mortland M.M., “Advances in Environmental Science and Technology”, John Wiley, New York, USA, (1977).
[14] Boyd S.A., Lee J.F., Mortland M., Attenuating Organic Contaminant Mobility by Soil Modification, Nature, 333: 345-347 (1988).
[15] Evans J.C., Pancoski S.E., Organoclay Modified Clays, Transp. Res. Rec., 1219: 160-168 (1989).
[16] Moazed H., Viraraghavan T., Asce F., Removal of Oil from Water by Bentonite Organoclay, Practice periodical of hazardous, toxic, and radioactive waste management, 9: 130-134 (2005).
[17] Carvalho M.N., Da Motta M., Benachour M., Sales D.C.S., Abreu C.A.M., Evaluation of BTEX and Phenol Removal from Aqueous Solution by Multi-Solute Adsorption Onto Smectite Organoclay, J. Hazard. Mater., 239(240): 95-101 (2012).
[18] Zheng S., Sun Z., Park Y., Ayoko G.A., Frost, R.L., Removal of Bisphenol A from Wastewater by Ca-Montmorillonite Modified with Selected Surfactants, Chem. Eng. Sci., 234: 416-422 (2013).
[19] Park Y., Sun Z., Ayoko G.A., Frost R.L., Bisphenol A Sorption by Organomontmorillonite: Implications for the Removal of Organic Contaminants from Water, Chemosphere, 107: 249-256 (2014).
[20] Mota M.F., Rodrigues M.G.F., Machado F., Oil-Water Separation Process with Organoclays: A Comparative Analysis, Appl. Clay Sci., 99: 237-245 (2014).
[21] El-Zahhar A.A., Al-Hazmi G.A., Organically Modified Clay for Adsorption of Petroleum Hydrocarbons, Eur. Chem Bull., 4(2): 87-91 (2015).
[22] Rathnayake S.I, Xi Y, Frost R.L, Ayoko G.A., Environmental Applications of Inorganiceorganic Clays for Recalcitrant Organic Pollutants Removal: Bisphenol A, J. Colloid Interface Sci., 470: 183-195 (2016).
[24] Baskaralingam P., Pulikesi M., Elango D., Ramamurthi V., Sivanesan S., Adsorption of Acid Dye onto Organobentonite, J. Hazard. Mater., 128: 138-144 (2006).
[26] Eren E., Afsin B., Onal Y., Removal of Lead Ions by Acid Activated and Manganese Oxide-Coated Bentonite, J. Hazard. Mater., 161: 677-85 (2009).
[27] Park Y., Ayoko G.A., Kurdi R. Horvath E., Kristof J., Frost R.L., Adsorption of Phenolic Compounds by Organoclays: Implications for the Removal of Organic Pollutants from Aqueous Media, J. Colloid Interface Sci., 406: 196-208 (2013).
[28] Cheng P., Qiu J., Gu M., Shangguan W., Synthesis of Shape-Controlled Titania Particles from a Precursor Solution Containing Urea, Mater. Lett., 58: 3751-3755 (2004).
[29] Tan X., Liu F., Hu L., Reed A.H., Furukawa Y., Zhang G., Evaluation of the Particle Sizes of Four Clay Minerals, Appl. Clay Sci., 135: 313-324 (2017).
[30] Alshabanat M., Al-Arrash A., Mekhamer W., Polystyrene/Montmorillonite Nanocomposites: Study of the Morphology and Effects of Sonication Time on Thermal Stability, J. Nanomater., 2013: 650725 (2013).
[31] Cervantes-Uc J.M., Cauich-Rodriguez J.V., Vazquez-Torres H., Garas-Mesias L.F., Paul D.R., Termal Degradation of Commercially Available Organoclays Studied by TGA-FT-IR, Thermochim. Acta., 457: 92-102 (2007).
[32] Hasanzadeh R., Abbasi Sourakia B., Pendashteh A., Khayati G., Fakhru’l-Razi A., Application of Isolated Halophilic Microorganisms Suspended and Immobilized on Walnut Shell as Biocarrier for Treatment of Oilfield Produced Water, J. Hazard. Mater., 400: 123197 (2020).
[34] SW-846 Test Method 9071B: n-Hexane Extractable Material (HEM) for Sludge, Sediment, and Solid Samples, Environmental Protection Agency.
[36] Mir N.A., Haque M., Khan A., Muneer M., Vijayalakshmi S., Photocatalytic Degradation of Herbicide Bentazone in Aqueous Suspension of TiO2: Mineralization, Identification of Intermediates and Reaction Pathways, Environ. Technol., 35: 407-415 (2014).
[37] Mirmasoomi S.R., Mehdipour Ghazi M., Galedari M., Photocatalytic Degradation of Diazinon Under Visible Light using TiO2/Fe2O3 Nanocomposite Synthesized by Ultrasonic-Assisted Impregnation Method, Sep. Purif. Technol., 175: 418-427 (2016).
[38] Fathinia S., Fathinia M., Rahmani A.A., Khataee A., Preparation of Natural Pyrite Nanoparticles by High Energy Planetary Ball Milling as a Nanocatalyst for Heterogeneous Fenton Process, Appl. Surf. Sci., 327: 190-200 (2015).
[40] Yang L., Zhou Z., Xiao L., Wang X., Chemical and Biological Regeneration of HDTMA-Modified Montmorillonite after Sorption with Phenol, Environ. Sci. Technol., 37: 5057-5061 (2003).
[41] Han R., Ding D., Use of Rice Husk for the Adsorption of Congo Red from Aqueous Solution in Column Mide, Bioresour. Technol., 99: 2938-2944 (2008).
[42] Langmuir, I., The Adsorbtion of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 40(9): 1361-1403 (1918).
[43] Bulut E., Ozacar˙M., Sengil I.A., Equilibrium and Kinetic Data and Process Design for Adsorption of Congo Red onto Bentonite, J. Hazard. Mater., 154: 613-622 (2008).
[44] Ho Y.S., McKay G.A., Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents, Process Saf. Environ. Prot., 76(4): 332-340 (1998).
[45] Kodama T., Harada Y., Ueda M., Shimizu K., Shuto K., Komarneni S., Selective Exchange and Fixation of Strontium Ions with Ultrafine Na-4-mica, Langmuir, 17: 4881-4886 (2001).
[46] Kuo S., Lotse G., Kinetics of Phosphate Adsorption and Desorption by Hematite and Gibbsite1, Soil Sci., 116: 400-406 (1974).