Synthesis of New Thiophene Derivatives and Investigation of the Antioxidant and Antimicrobial Properties of the Synthesized Derivatives: Application of Magnetic Iron Oxide Nanoparticles Prepared from Orange Peel Extract

Document Type : Research Article

Authors

1 Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, I.R. IRAN

2 Department of Chemistry, Payame Noor University Tehran, I.R. IRAN

3 Department of Chemistry, Firoozkooh Branch, Islamic Azad University, Firoozkooh, I.R. IRAN

Abstract

In this research, the synthesis of new thiophene derivatives with multicomponent reactions of isothiocyanate, ethyl bromopyruvate, 1,3-dicarbonyl compounds, and the catalytic amount of magnetic iron oxide nanoparticles prepared from orange peel extract in water as solvent was investigated. The yield of the synthesized derivatives in these conditions is very good and the reaction time is also short. To confirm the structure of iron oxide magnetic nanoparticles, a Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD), Transmission Electron Microscope (TEM), Energy Diffraction X-ray (EDX) spectroscopy, and Vibrating Sample Magnetometer ( VSM) were used. Also, the antioxidant activity of some synthesized derivatives was studied using DPPH radical and iron Reduction Activity Potential (FRAP) test. Also, the antimicrobial activity of some synthesized compounds using disc diffusion tests on gram-positive bacteria and Gram-negative was investigated. Easy separation of the catalyst, carrying out the reaction in green solvent and precipitation of the product in water, easy separation of the product and catalyst, and preparation of the catalyst in the green method are among the advantages of this method is the synthesis of thiophene derivatives. Also, the investigation of the antioxidant and antimicrobial properties of some synthesized compounds showed that these compounds have good antioxidant and antimicrobial properties.

Keywords

Main Subjects


      (b) Ramon D.J., Yus M., Asymmetric Multicomponent Reactions (AMCRs): The New Frontier. Angew. Chem., Int. Ed. 44(11): 1602-34 (2005).
[3] Domling A., Ugi I.,  Multicomponent Reactions with Isocyanides. Angew. Chem., Int. Ed. 39: 3168-3210 (2000).
[4] Weber L., Multi-Component Reactions and Evolutionary Chemistry. Drug Discovery Today 7(2): 143-7 (2002).
[5] Zhu J., Bienayme H., (Eds.); Wiley-VCH: Weinheim, Germany, (2005). DOI: 10.1016/s1359-6446(01)02090-6
[6] Wipf P., Kendall C., Novel Applications of Alkenyl Zirconocenes. Chem. Eur. J. 8(8): 1779-84 (2002).
[7] Balme G., Bossharth E., Monteiro N., Cover Picture: Pd-Assisted Multicomponent Synthesis of Heterocycles, Eur. J. Org. Chem. 4091 (2003).
[8] Jacobi von Wangelin A., Neumann H., Gordes D., Klaus S., Strubing D., Beller M., Multicomponent Coupling Reactions for Organic Synthesis: Chemoselective Reactions with Amide–Aldehyde Mixtures. Chem. Eur. J. 9(18): 4286-4294 (2003).
[9] (a) Domling A., Ugi I., Multicomponent Reactions with Isocyanides. Angew. Chem., Int. Ed. 39(18): 3168-3210 (2000).
      (b) Heck S., Domling A., A Versatile Multi-Component One-Pot Thiazole Synthesis. Synlett, 424 (2000).
[10] Weber L., The Application of Multi-Component Reactions in Drug Discovery. Curr. Med. Chem. 9(23): 2085-93 (2002).
[11] (a) Ramon D.J., Yus M., Asymmetric Multicomponent Reactions (AMCRs): The New Frontier. Angew. Chem., Int. Ed. 44(11): 1602-34 (2005).
        (b) Orru R.V.A., Greef de M., Recent Advances in Solution-Phase Multicomponent Methodology for the Synthesis of Heterocyclic Compounds, Synthesis, 10: 1471-1499 (2003).
[12] Tavakolinia F., Baghipour T., Hossaini Z., Zareyee D., Khalilzadeh M. A., Rajabi M., KF/Clinoptilolite Promoted Synthesis of Quinolines in Water Using Multicomponent ReactionsNucleic Acid Therapeutics, 22: 265 (2012).
[13] Schneller W., Thiochromanones and Related Compounds. Adv. Heterocycl. Chem. 18: 59-97 (1975).
https://doi.org/10.1016/S0065-2725(08)60128-2
[14] The Chemistry of Heterocyclic Compounds: Thiophene and Its Derivatives; Gronowitz S. (Ed.); John Wiley & Sons, Inc., New York, 44 (1991).
[15] Bertram H.J., Emberger R., Gu¨ntert M., Sommer H., Werkhoff P., In “Recent Developments in Flavor and Fragrance Chemistry”; Hopp R., Mori K., (Eds.); VCH: Weinheim, (1993).
[16] Sperry J.B., Wright, D.L. Furans, Thiophenes and Related Heterocycles in Drug Discovery. Curr. Opin. Drug Discovery Dev. 8: 723-740 (2005).
[17] Roncali J. Conjugated Poly(Thiophenes): Synthesis, Functionalization, and Applications. Chem. Rev. 92(4): 711-738 (1992).
[18] Nalwa H.S. Organic Materials for Third-Order Nonlinear Optics. Adv. Mater. 5: 341-358 (1993).
[19] Maj J., Rogoz Z., Sowinska H. Zalewski Z., Some Central Effects of Tiflucarbine, A New Potential Antidepressant Drug.  Pol. J. Pharmacol Pharm.  39: 63-74 (1987).
[20] Schulz V., Fischer W., Hanselle U., Huhmann W., Zietsch V. Inhibition of Thrombocyte Aggregation by Oral Motapizone and Other Drugs. Eur, J, Clin, Pharmacol, 31: 411-4 (1986).
[22] Scotti L., Scotti M.T., Lima E.O., Silva M.S., Lima M.C.A., Pitta I.R., Antifungal Activity of Topical Microemulsion Containing a Thiophene Derivative.  Molecules; 17: 2298-315 (2012).
[23] Subba D.R., Rashed S., Thaslim S.K.B., Raju C.R., Naresh K., SiO2/ZnCl2 Catalyzed a-Aminophosphonates and Phosphonated N-(Substituted Phenyl) Sulfonamides of 2-Aminothiophene: Synthesis and Biological Evaluation. Der. Pharm. Chem.; 5: 61-74 (2013).
[25] Mahmoudi M., Sant Sh., Wang B., Laurent S., Sen T., Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Development, Surface Modification and Applications in Chemotherapy. Adv. Drug Deliv. Rev. 63: 24-46 (2011).
[26] Vinay R., Prakash R., Sushil S., Antioxidant Activity of Some Selected Medicinal Plants in Western Region of India. Advan. Biol. Res., 4: 23 (2010).
[27] Kolosnjaj-Tabi, J., Hartman, K.B., Boudjemaa, S., Ananta, J.S., Morgant, G., Szwarc, H., In Vivo Behavior of Large Doses of Ultrashort and Full-Length Single-Walled Carbon Nanotubes After Oral and Intraperitoneal Administration to Swiss Mice. ACS Nano., 4(3): 1481-92 (2010).
[28] Zhang, Y., Wang, B., Meng, X., Sun, G., Gao, C., Influences of Acid-Treated Multiwalled Carbon Nanotubes on Fibroblasts: Proliferation, Adhesion, Migration, and Wound Healing. Ann. Biomed. Eng., 39: 414-26 (2010).
[29] Donaldson, K., Poland, C.A., New Insights into Nanotubes. Nat. Nanotechnol., 4: 708-710 (2009).
[30] Herzog E., Casey A., Lyng F.M., Chambers G., Byrne H.J., Davoren M., A New Approach o the Toxicity Testing of Carbon-Based Nanomaterials--the Clonogenic Assay. Toxicol. Lett., 174(1-3): 49-60 (2007).
[32] Foldvari M., Bagonluri M., Carbon Nanotubes as Functional Excipients for Nanomedicines: II. Drug Delivery and Biocompatibility Issues.  Nanomedicine., 4(3): 183-200 (2008).
[33] Tang S., Tang Y., Zhong L., Murat K., Asan G., Yu J., Short- and Long-Term Toxicities of Multi-Walled Carbon Nanotubes in Vivo and in Vitro. Appl. Toxicol., 32(11): 900-12 (2012).
[35] Gomez-Gualdron D.A., Burgos J.C., Yu J., Balbuena P.B., Carbon Nanotubes: Engineering Biomedical Applications. Prog. Mol. Biol. Transl. – Sci., 104: 175-245 (2011).
[36] Liu Z., Cai W.B., He L., Nakayama N., Chen K., Sun X., Chen X., Dai H., In Vivo Biodistribution and Highly Efficient Tumour Targeting of Carbon Nanotubes in Mice. Nat. Nanotech., 2: 47-52 (2007).
[37] Huang X., Teng X., Chen D., Tang F., He J., The effect of the Shape of Mesoporous Silica Nanoparticles on Cellular Uptake and Cell Function. Biomaterials., 31(3): 438-448 (2010). DOI:10.1016/j.biomaterials.2009.09.060
[38] Liu Z., Tabakman S., Welsher K., Dai H., Carbon Nanotubes in Biology and Medicine: In Vitro and in Vivo Detection, Imaging and Drug Delivery. Nano Res., 2(2): 85-120 (2009).
[39] Li Y., Wang J., Huang M., Wang Z., Wu Y., Wu Y., Direct C–H Arylation of Thiophenes at Low Catalyst Loading of a Phosphine-Free Bis(alkoxo)palladium Complex.  J. Org. Chem.79(7): 2890-2897 (2014).
[40] Huang G., Li J., Li J., Li J., Sun M., Zhou P., Chen L., Huang Y., Jiang S., Li Y., Access to Substituted Thiophenes Through Xanthate-Mediated Vinyl C(sp2)-Br Bond Cleavage and Heterocyclization of Bromoenynes. J. Org. Chem.85(20): 13037-13049 (2020). DOI: 10.1021/acs.joc.0c01733
[41] Paixão D.B., Rampon D.S., Salles H.D., Soares E.G.O., Bilheri F.N., Schneider P.H., Trithiocarbonate Anion as a Sulfur Source for the Synthesis of 2,5-Disubstituted Thiophenes and 2-Substituted Benzo[ b]thiophenes J. Org. Chem.85(20): 12922-12934 (2020).
[42]. Abed H.B, Blum S.A., Transition-Metal-Free Synthesis of Borylated Thiophenes via Formal Thioboration.  Org. Lett.20(21): 6673-6677 (2018).
[44] Shimada K., Fujikawa K., Yahara K., Nakamura T., Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion. J. Agric. Food Chem., 40(6): 945-948 (1992).
[45] Yen G.C., Duh P.D., Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species. J. Agric. Food Chem., 42(3): 629-632 (1994).
[46] Yildirim A., Mavi A., Kara A.A., Determination of Antioxidant and Antimicrobial Activities of Rumex Crispus L. Extracts. J. Agric. Food Chem., 49(8): 4083-4089 (2001).