بررسی تعادل فازی اسید بوتیریک در محلول آبی با استفاده از حلال‌های آلی (متیل اتیل کتون و دی اتیل اتر)

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده فنی، دانشگاه گیلان، رشت، ایران

چکیده

در این پژوهش‌ داده‌های حلالیت و خطوط رابط سامانه‌های سه جزئی (آب + اسید بوتیریک + حلال آلی) در دمای 2/298 کلوین و فشار 3/101 کیلوپاسکال اندازه‌گیری شدند. حلال‌های آلی انتخاب شده شامل متیل اتیل کتون و دی اتیل اتر هستند. منحنی‌های حلالیت تجربی به طور آزمایشگاهی با استفاده از روش نقطه ابری تعیین شدند. داده‌های خطوط رابط تجربی توسط تیتراسیون اسید-باز، روش کارل-فیشر و اندازه‌گیری ضریب شکست تعیین شدند. هر دو سامانه سه جزئی مورد بررسی، رفتار نوع یک تعادل مایع-مایع را نشان می‌دهند. معادله‌های همبستگی اتمر-تابیاس و هند برای تأیید کیفیت داده‌های تعادل مایع-مایع برای هر دو سامانه مورد مطالعه استفاده شدند. به‌منظور سنجش توانایی حلال‌ها در استخراج اسید بوتیریک از محلول آبی، ضریب‌های توزیع و فاکتورهای انتخاب‌پذیری برای هر دو سامانه مورد مطالعه، محاسبه و گزارش شده است میانگین فاکتور جداسازی برای متیل اتیل کتون 12/41 و برای دی اتیل اتر 71/296 به‌دست آمد. برای هر سامانه، همبستگی داده‌های خطوط رابط تجربی با استفاده از مدل ترمودینامیکی UNIQUAC و NRTL مورد بررسی قرار گرفتند و پارامترهای برهم‌کنش دوجزیی تخمین زده شدند.

کلیدواژه‌ها

موضوعات


[1] Masoumi H., Ghaemi A., Gilani H.G., Evaluation of Hyper-Cross-Linked Polymers Performances in the Removal of Hazardous Heavy Metal Ions: A Review, Sep. Purif. Technol, 260: 118221 (2021).
[2] معصومی ح.، قنادزاده گیلانی ح.، اثر نمک‌های فسفات در استخراج مالیک اسید به وسیله‌ سامانه‌ دو فازی آبی، نشریه شیمی و مهندسی شیمی ایران، (4)39: 167 تا 175 (1399).
[3] قنادزاده گیلانی ح.، معصومی ح.، یوسفی م.، مطالعه مقایسه حذف فلز روی با استفاده از ریزجلبک اسپیرولینا خام و اصلاح شده با نانو جاذب مغناطیسی، نشریه شیمی و مهندسی شیمی ایران، (2)41: 57 تا 70 (1401).
[4] معصومی ح.، ردایی س.، قنادزاده گیلانی ح.، بررسی کارایی زئولیت کلینوپتیلولیت طبیعی در حذف منیزیم از محلول‌های آبی، نشریه شیمی و مهندسی شیمی ایران ، (4)40: 55 تا 73 (1400).
[5] Ghanadzadeh H., Ghanadzadeh A., (Liquid + Liquid) Equilibria in (Water + Ethanol + 2-Ethyl-1-Hexanol) at T=(298.2, 303.2, 308.2, and 313.2) K, J. Chem. Thermodyn., 35(9): 1393-1401 (2003).
[6] Masoumi H., Penchah H.R., Gilani H.G., Shaldehi T.J.,  Malic Acid Extraction from Aqueous Solution by using Aqueous Two-Phase System Method, Res. Chem., 1: 1-9 (2019).
[7] Roman C., García‐Morales M., Achieving a Better Understanding of Binary Azeotropic Mixtures Distillation through Aspen Plus Process Simulations, Comput. Appl. Eng. Educ., 27(6): 1453-1464 (2019).
[8] Jiang Z., Agrawal R., Process Intensification in Multicomponent Distillation: A Review of Recent Advancements, Chem. Eng. Res. Des., 147: 122-145 (2019).
[10] Ghanadzadeh H., Haghi A., Liquid–Liquid Equilibrium Data for Water + Ethanol + Trans-Decalin: Measurement and Predication, Fluid Ph. Equilibria., 243(1-2): 45-50 (2006).
[11] Moradi Estalkhzir F., Ramezanipour Penchah H., Ghanadzadeh Gilani H., Mikayilzadeh H., Experimental Data of Citric Acid Extraction from Aqueous Solution with 1-Decanol by Using Liquid–Liquid Equilibrium, J. Chem. Eng. Data., 63(9): 3227-3236 (2018).
[12] Gomis V., Dolores Saquete M., Boluda N., The Influence of Temperature on the Liquid–Liquid–Solid Equilibria of the Ternary System Water+ Ethanol+ 1-Dodecanol, Fluid Ph. Equilibria., 235(1): 99-103 (2005).
[13] Gomis V., Font A., Saquete M.D., Vapour–Liquid–Liquid and Vapour–Liquid Equilibrium of the System Water+ Ethanol+ Heptane at 101.3 kPa, Fluid Ph. Equilibria., 248(2): 206-210 (2006).
[14] Özmen D.S., Dramur U., (Liquid+ Liquid) Equilibria of (Water+ Propionic Acid+ Dimethyl Phthalate) at Several Temperatures, J. Chemical. Thermodyn., 37(8): 837-842 (2005).
[15] Ghanadzadeh H., Ghanadzadeh A., Liquid–Liquid Phase Equilibria of the Ternary System of Water/TBA/2-Ethyl-1-Hexanol, Fluid Ph. Equilibria., 202(2): 337-344 (2002).
[17] Stephenson R.M., Mutual Solubilities: Water-Ketones, Water-Ethers, and Water-Gasoline-Alcohols, J. Chem. Eng. Data., 37(1): 80-95 (1992).
[18] Ginnings P., Plonk D., Carter E., Aqueous Solubilities of some Aliphatic Ketones, J. Am. Chem. Soc., 62(8): 1923-1924 (1940).
[19] Kletz T.A., Amyotte P., ''Process plants: A handbook for inherently safer design'', CRC Press. New York, (2010).
[20] Fuess L.T., Santos G.M., Delforno T.P., Souza B., Silva A.J., Biochemical Butyrate Production via Dark Fermentation as an Energetically Efficient Alternative Management Approach for Vinasse in Sugarcane Biorefineries, Renew. Energy., 158: 3-12 (2020).
[21] Liu B., Kleinsteuber S., Centler F., Harms H., Sträuber H., Competition between Butyrate Fermenters and Chain-Elongating Bacteria Limits the Efficiency of Medium-Chain Carboxylate Production, Front. Microbiol., 11: 336 (2020).
[22] Appert O., Garcia A.R., Frei R., Roduit C., Constancias F., Neuzil-Bunesova V., Ferstl R., Zhang J., Initial Butyrate Producers during Infant Gut Microbiota Development are Endospore Formers, Environ. Microbiol., 22(9): 3909-3921 (2020).
[23] Leung R.W.,  Badakhshan A., Prediction of Liquid-Liquid Equilibria using UNIFAC for Organic Acid-Water-Toluene Systems, Ind. Eng. Chem. Res., 26(8): 1593-1597 (1987).
[24] Kırbaşlar Ş.İ., Bilgin M., Batr D., (Liquid+ Liquid) Equilibria of (Water+ Butyric Acid+ Cyclohexyl Acetate) Ternary System, J. Chem. Thermodyn., 37(2): 175-180 (2005).
[25] Bilgin M., Kirbaşlar S., Dramur U., Ozcan O., (Liquid+ Liquid) Equilibria of (Water+ Butyric Acid+ Isoamyl Alcohol) Ternary System, J. Chem. Thermodyn., 37(4): 297-303 (2005).
[26] Bilgin M., Arısoy Ç., Liquid Phase Equilibria of (Water+ Propionic Acid+ Oleyl Alcohol) Ternary System at Several Temperatures, Fluid ph. equilibria., 250(1-2): 59-63 (2006).
[27] Kırbaşlar Ş.İ., (Liquid+ Liquid) Equilibria of the (Water+ Butyric Acid+ Dodecanol) Ternary System, J. Chem. Thermodyn., 23(3): 696-700 (2006).
[28] Kırbaşlar Ş.İ., Şahin S., Bilgin M., (Liquid+ Liquid) Equilibria of (Water+ Butyric Acid+ Esters) Ternary Systems, J. Chem. Thermodyn., 39(9): 1279-1285 (2007).
[29] Kırbaşlar Ş.İ., Şahin S., Bilgin M., (Liquid+ Liquid) Equilibria of (Water+ Butyric Acid+ Dibasic Esters) Ternary Systems, J. Chem. Thermodyn., 39(2): 284-290 (2007).
[30] Gök A., Kirbaşlar S., Ghanadzadeh H., Uslu H., Liquid–Liquid Equilibria of (Water+ Butyric Acid+ Diethyl Succinate or Diethyl Glutarate or Diethyl Adipate) Ternary Systems, Fluid ph. equilibria., 303(1): 71-75 (2011).
[31] Ghanadzadeh H., Ghanadzadeh A., Asgharzadeh S., Dastmoozeh N., Phase Diagrams for the Aqueous Solutions of Butyric Acid with Cyclohexane at Different Temperatures: Experimental and Correlated Data, Thermochim. Acta., 523(1-2): 154-160 (2011).
[32] Ghanadzadeh H., Ghanadzadeh A., Asgharzadeh Moghadam M., Measurement and Correlation of Phase Equilibrium Data of the Mixtures Consisting of Butyric Acid, Water, Cyclohexanone at Different Temperatures, J. Chem. Thermodyn., 47: 288-294 (2012).
[33] Ghanadzadeh H., Ghanadzadeh A., Janbaz M., Shekarsaraee S.,  Experimental Determination and Correlation of Tie Line Data for the System (Water+ Butyric Acid+ Methylcyclohexane) at Four Temperatures, Fluid ph. equilibria., 332: 151-158 (2012).
[34] Gilani H.G., Gilani A.G., Janbaz M., (Liquid+ Liquid) Equilibria of Aqueous Solutions of Butyric Acid with n-Heptane and Toluene at T=(298.2, 308.2, and 318.2) K, J. Chem. Thermodyn., 57: 152-159 (2013).
[35] Gilani  A.G., Gilani H.G., Saadat S.S., Solubility and Tie Line Data for the Aqueous Solutions of Butyric Acid with 1-Octanol and 2-Ethyl-1-Hexanol at Various Temperatures, Fluid Ph. Equilibria., 361: 45-53 (2014).
[36] Ghanadzadeh H., Asgharzadeh S., Dastmoozeh N., Shekarsaraee S., Tie-Line Data for Aqueous Mixtures of Butyric Acid with Isobutyl Acetate at Various Temperatures, KOREAN. J. CHEM. ENG., 29(11): 1615-1621 (2012).
[38] Marták J.N., Liptaj T., Schlosser S.T., Extraction of Butyric Acid by Phosphonium Decanoate Ionic Liquid, J. Chem. Eng. Data., 64(7): 2973-2984 (2019).
[39] Li Z., Sun Y., Wei B., Xio Z., Two-Step Salting-out Extraction of 1,3-Propanediol, Butyric Acid and Acetic Acid from Fermentation Broths, Sep. Purif. Technol., 209: 246-253 (2019).
[40] Jänisch T., Reinhardt S., Pohsner U., Böringer S., Bolduan R., Steinbrenner J., Oechsner H., Separation of Volatile Fatty Acids from Biogas Plant Hydrolysates, Sep. Purif. Technol., 223: 264-273 (2019).
[41] Zhu Y., Yang S.-T., Effect of pH on Metabolic Pathway Shift in Fermentation of Xylose by Clostridium Tyrobutyricum, J. Biotechnol., 110(2): 143-157 (2004).
[42] Treybal R.E., ''Liquid Extraction. Industrial & Engineering Chemistry'', CRC Press. New York (1958).
[43] Treybal R.E., ''Mass transfer operations'', CRC Press. New York (1980).
[45] Gilani A.G., Gilani H.G., Saadat S.S., Nasiri-Touli E., Peer M.,  Liquid-Liquid Equilibrium Data in Aqueous Solutions of Propionic and Butyric Acids with 1-Heptanol at T=(298.15, 308.15, and 318.15 (K), Korean. J.Chem. Eng., 33(4): 1408-1415 (2016).
[47] Ghanadzadeh H., Ghanadzadeh A., (Liquid+ Liquid) Equilibria in (Water+ Ethanol+ 2-Ethyl-1-Hexanol) at T=(298.2, 303.2, 308.2, and 313.2) K, J. Chem. Thermodyn., 35(9): 1393-1401 (2003).
[48] Seyed Saadat S.L., Gilani A.G., Gilani H.G., Kashef A., Fallahi S., Liquid Phase Equilibria of Aqueous Mixtures of Carboxylic Acids (C1–C4) with Ethylbenzene: Thermodynamic and Mathematical Modeling, J. Chem. Eng. Data., 61(10): 3391-3397 (2016).
[49] Bayazıt K., Gok A., Uslu H., Kırbaşlar S., Equilibria of (Water+ Butyric Acid+ Butyl Acetate) Ternary Systems at Different Temperatures, Fluid Ph. Equilibria., 379: 185-190 (2014).
[50] Marták J., Schlosser Š., Liquid-Liquid Equilibria of Butyric Acid for Solvents Containing a Phosphonium Ionic Liquid, Chem. Zvesti., 62(1): 42-50 (2008).
[51] Sabolova E., Schlosser Š., Martak J., Liquid− Liquid Equilibria of Butyric Acid in Water+ Solvent Systems with Trioctylamine as Extractant, J. Chem. Eng. Data., 46(3): 735-745 (2001).
[52] Alkaya E., Kaptan S., Ozcan L., Demirer U., Demirer G., Recovery of Acids from Anaerobic Acidification Broth by Liquid–Liquid Extraction, Chemosphere., 77(8): 1137-1142 (2009).
[53] Blahušiak M., Schlosser Š., Marták J., Extraction of Butyric Acid with a Solvent Containing Ammonium Ionic Liquid, Sep. Purif. Technol., 119: 102-111 (2013).
[54] Wu J., Prausnitz J.M., 110th Anniversary: Molecular Thermodynamics: An Endless Frontier, Ind. Eng. Chem. Res., 58(23): 9707-9708 (2019).
[55] Ji G., Liu G., Study on the Feasibility of Split Crossing Distillation Compartment Boundary, Chem Eng Process., 46(1): 52-62 (2007).
[56] ابراهیم خوانی م.ج.، قنادزاده گیلانی ح.، استفاده از شبکه عصبی ANFIS و MLP در پیش‌بینی استخراج ترکیب‌های آروماتیکی از ترکیب‌های آلیفاتیکی توسط مایع‌های یونی، نشریه شیمی و مهندسی شیمی ایران،  (3)39: 141 تا 154 (1399).