Coating LaNiO3 / γ-Al2O3 catalyst in microchannel reactor for dry reforming of methane

Document Type : Research Article


Department of Chemical Engineering, Faculty of Engineering, Razi University, Kermanshah, IRAN


A lot of researches have done on the performance of different powder from catalysts of the form in dry reforming of methane in fixed bed micro reactors. However, few reports have published on the catalyst thin layer method for using in microchannel reactor that has less mass and heat transfer limitation. Recently, sputtering and evaporation methods have investigated in microchannel reactors for making a thin-layer catalyst, but these methods have problems such as; high cost and uncontrolled catalyst loading. In this study, the catalyst coated on both sides of the stainless steel plate, and the roughness prepared among the sandblasting method. The catalyst tested in a microchannel reactor and identified the products by chromatography. In this paper, the LaNiO3 perovskite catalyst synthesized in two states with alumina support and without the support thus coated on the plate. For characterizing the catalyst EDX, XRD, SEM, FTIR have been used. The results showed that the catalyst with the support had better stability and conversion rate than the catalyst without support. The catalyst performance and its stability tested at 800°C for 28 hours. The catalyst at this temperature showed the best results in dry reforming of methane with an average ratio of H2/CO = 0.91 for catalyst without the support and an average ratio of H2 /CO = 0.97 for the catalyst with alumina support. Hence, using a microchannel reactor has various advantages compared with a fixed bed reactor, such as; increasing heat and mass transfer and using less amount of catalysts. The method of coating the catalyst in this research showed good performance and stability compared to costly coating methods, such as sputtering in microchannel reactors.


Main Subjects

[1] Cormier J.M., Rusu I., Syngas Production Via Methane Steam Reforming with Oxygen: Plasma Reactors Versus Chemical Reactors, J. Phys. D: Appl. Phys, 34(18): 2798 (2001).
[2] Rostrup-Nielsen J.R., New aspects of Syngas Production and Use, Catal.Today., 63(2-4): 159-164 (2000).
[3] Xu J., Yeung.C. M.Y., Ni J., Meunier F., Acerbi N., Fowles M., Tsang S. C., Methane Steam Reforming for Hydrogen Production Using Low Water-Ratios Without Carbon Formation Over Ceria Coated Ni Catalysts, Appl. Catal A: Gen, 345(2): 119-121 (2008).
[4] Prettre M., Eichner C., Perrin M., The Catalytic Oxidation of Methane to Carbon Monoxide and Hydrogen, J. Chem. Soc. Faraday Trans42: 335-339 (1946).
[5] Richardson J.T., Paripatyadar.S.A., Carbon Dioxide Reforming of Methane with Supported Rhodium, Appl. Catal, 61(1): 293-309 (1990).
[6] Abdollahifar M., Haghighi M., Babaluo A.A., Syngas Production Via Dry Reforming of Methane Over Ni/Al2O3–MgO Nanocatalyst Synthesized Using Ultrasound EnergyJ. Ind. Eng. Chem, 20(4): 1845-1851 (2014).
[7] Barroso-Quiroga M.M., Castro-Luna A.E., Catalytic Activity and Effect of Modifiers on Ni-Based Catalysts for the Dry Reforming of Methane, Int. J. Hydrog, 35(11): 6052-6056 (2010).
[8] Curry-Hyde H. E., Howe R. F. (Eds.)., "Natural Gas Conversion II" ,Elsevier (1994).
[9] Chen Y. Hu C.,  Gong M., Zhu X., Chen Y., Tian A., Chemisorption of Methane Over Ni/Al2O3 Catalysts, J. Mol. Catal. A:Chem, 152(1-2): 237-244 (2000).
[10] فیروزی، محمد؛ بقالها، مرتضی؛ اسدی، موسی، سنتز زئولیت ZSM-5 به عنوان کاتالیست فرایند تبدیل متانول به پروپیلن، نشریه شیمی و مهندسی شیمی ایران 31(2): ۲۱ تا ۲۶ (1391).
[11] Hou Z., Chen P., Fang H., Zheng X., Yashima T., Production of Synthesis Gas Via Methane Reforming with CO2 on Noble Metals and Small Amount of Noble-(Rh-) Promoted Ni Catalysts, Int. J. Hydrog31(5): 555-561 (2006).
[12] پرنیان، محمدجواد؛ مرتضوی، یداله؛ طاهری نجف آبادی، علی؛ خدادادی، عباسعلی، استفاده از روش ترسیب شیمیایی فاز بخار برای لایه نشانی روتنیوم از پیش ماده Ru3(CO)12 بر روی کاتالیست Co/Al2O3 و بررسی عملکرد کاتالیست در واکنش فیشر تروپش، نشریه شیمی و مهندسی شیمی ایران 32(4): ۱۷ تا ۳۲ (۱۳۹۲).
[13] Rostrupnielsen J.R., Hansen J.B., CO2-Reforming of Methane Over Transition MetalsJ. Catal, 144(1): 38-49 (1993).
[14] Zhou Y., "Platinum Group Metals Catalyzed Steam Methane Reforming Via Micro-Channel Reactor " (Master's thesis, University of Cape Town) (2014).
[15] Ruckenstein E., Wang H.Y., Carbon Deposition and Catalytic Deactivation During CO2 Reforming of CH4 Over Co/γ-Al2O3 Catalysts, J. Catal, 205(2): 289-293 (2002).
[16] Amin R., Liu B., Ullah S., Biao H. Z., Study of Coking and Catalyst Stability Over CaO Promoted Ni-Based MCF Synthesized by Different Methods for CH4/CO2 Reforming Reaction, Int. J. Hydrog,s 42(34): 21607-21616 (2017).
[17] Gandia L. M., Arzamedi G., Dieguez. P. M.(Eds)., "Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety", Newnes (2013).
[18] Sangsong S., Phongaksorn M., Tungkamani S., Sornchamni T., Chuvaree R., Dry Methane Reforming Performance of Ni-Based Catalyst Coated Onto Stainless Steel Substrate, Energy Procedia, 79: 137-142 (2015).
[19] Moradi G. R., Rahmanzadeh M., Sharifnia S., Kinetic Investigation of CO2 Reforming of CH4 Over La–Ni Based Perovskite, Chem. Eng. Sci, 162(2): 787-791 (2010).
[21] Moradi G., Hemmati H., Rahmanzadeh M., Preparation of a LaNiO3/γ‐Al2O3 Catalyst and Its Performance in Dry Reforming of Methane, Chem. Eng. Technol, 36(4): 575-580 (2013).
[23] Irvine J. T., Neagu D., Verbraeken M. C., Chatzichristodoulou C., Graves. C., Mogensen M. B., Evolution of the Electrochemical Interface in High-Temperature Fuel Cells and Electrolysers, Nat. Energy, 1(1): 1-13 (2016).
[24] Khettab M., Omeiri S., Sellam D., Ladjouzi M. A., Trari. M., Characterization of LaNiO3 Prepared by Sol–Gel: Application to Hydrogen Evolution Under Visible LightMater. Chem. Phys132(2-3): 625-630 (2012).
[25] Fernandes J. D., Melo D. M. D. A., Zinner L. B., Salustiano C. D. M., Silva Z. R., Martinelli A. E., Bernardi M. I. B., Low-Temperature Synthesis of Single-Phase Crystalline LaNiO3 Perovskite Via Pechini Method, Mater. Lett, 53(1-2): 122-125 (2002).