Sensitivity analysis and optimization of modified CO2CPU process using response surface methodology

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Iranshahr Branch, Islamic Azad University, Iranshahr, IRAN

2 Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, IRAN

Abstract

Today, the CO2 emission from the combustion of fossil fuels is recognized as one of the main causes of global warming and its consequent problems. Oxy-fuel combustion (OFC) is an effective way to separate CO2 from combustion flue gas. CO2 Compression and Purification Unit (CO2CPU) is a relatively new industrial unit for the separation of CO2 from the combustion gas produced by OFC process. However, the high energy required for the compression and refrigeration process is one of the main challenges of this unit. Therefore, identification and sensitivity analysis of the parameters affecting the process are needed for appropriate optimization and control of these parameters. The present study, while introducing this unit, aimed at sensitivity analysis, optimization and improvement of the process. The process was simulated in the Aspen Plus environment. In addition, Peng-Robinson thermodynamic equation of state was applied to estimate the thermodynamic properties and it was improved using the data ​​in the literatures to increase the accuracy of the thermodynamic coefficients. Given that the interaction of operational parameters is effective on the optimization results, the response surface methodology (RSM) was employed for optimization. The results of this study show that the process can be performed at 25 bar pressure by improving the operating conditions, while the operating pressure of this process was previously reported to be 30 bar. Obviously, reducing operating pressure decreases not only the operating costs but also the investment costs and thus, the total costs.

Keywords

Main Subjects


[2] Stewart C., Hessami M., A Study of Methods of Carbon Dioxide Capture and Sequestration-the Sustainability of a Photosynthetic Bioreactor Approach. Energy Conversion and management, 46(3): 403-420 (2005.(
[3] Raftery A.E., Zimmer A., Frierson D.M.W., Startz R., Liu P., Less Than 2 °C Warming by 2100 Unlikely. Nature climate change, 7(9): 637-641 (2017).
[4] Shavalieva G., Kazepidis P., Papadopoulos A.I., Seferlis P., Papadokonstantakis S.,  Environmental, Health and Safety Assessment of Post-Combustion CO2 Capture Processes with Phase-Change Solvents. Sustainable Production and Consumption, 25: 60-76 (2021).
[5] Al‐Ghussain L., Global Warming: Review on Driving Forces and Mitigation. Environmental Progress & Sustainable Energy, 38(1): 13-21 (2019).
[6] O’Ryan R., Nasirov S., Álvarez-Espinosa A., Renewable Energy Expansion in the Chilean Power Market: A Dynamic General Equilibrium Modeling Approach to Determine CO2 Emission Baselines. Journal of Cleaner Production, 247: 119645 (2020).
[7] Wilson I.G., Staffell I., Rapid Fuel Switching from Coal to Natural Gas Through Effective Carbon Pricing. Nature Energy, 3(5): 365-372 (2018).
[9] Baena-Moreno F.M., Rodríguez-Galán M., Vega F., Alonso-Fariñas B., Luis F., Arenas V., Navarrete B., Carbon Capture and Utilization Technologies: A Literature Review and Recent Advances. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(12): 1403-1433 (2019).
[10] Gopan A., Kumfer B. M., Phillips J., Thimsen D., Smith R., Axelbaum R.L., Process Design and Performance Analysis of a Staged, Pressurized Oxy-Combustion (SPOC) Power Plant for Carbon Capture. Applied energy, 125: 179-188 (2014).
[11] Guan G., Clean Coal Technologies in Japan: A Review. Chinese journal of chemical engineering, 25(6): 689-697 (2017).
[12] Alkadhem A.M., Elgzoly M.A., Onaizi S.A., Novel Amine-Functionalized Magnesium Oxide Adsorbents for CO2 Capture at Ambient Conditions. Journal of Environmental Chemical Engineering, 8(4): 103968 (2020).
[13] Metz B., Davidson O., Coninck H., Loos M., Meyer L., Carbon Dioxide Capture and Storage. IPCC Special Report on Carbon Dioxide Capture and Storage, (2005).
[14] Rolfe A., Huang Y., Haaf M., Pita A., Rezvani S., Dave A., Hewitt N.J., Technical and Environmental Study of Calcium Carbonate Looping Versus Oxy-Fuel Options For Low CO2 Emission Cement Plants. International Journal of Greenhouse Gas Control, 75: 85-97 (2018).
[15] Middleton R.S., Yaw S.P., Hoover B.A., Ellett K.M., SimCCS: An Open-Source Tool for Optimizing CO2 Capture, Transport, and Storage Infrastructure. Environmental Modelling & Software, 124: 104560 (2020).
]16[ اسماعیل کوهستانیان، جعفر صادقی، داود محبی کلهری، عبدالرضا صمیمی و فرهاد شهرکی، بهینه سازی و کنترل فرآیند CO2CPU، پروژه دکتری، گروه مهندسی شیمی دانشگاه سیستان و بلوچستان، تابستان (1397).
]17[ اسماعیل کوهستانیان، جعفر صادقی و داود محبی کلهری، شبیه ­سازی و طراحی فرآیندهای نفت، گاز و شیمیایی با Aspen Plus، انتشارات جهاد دانشگاهی، چاپ اول، (1396).
[18] Song C., Liu Q., Deng S., Li H., Kitamura Y., Cryogenic-Based CO2 Capture Technologies: State-of-the-Art Developments and Current Challenges. Renewable and Sustainable Energy Reviews, 101: 265-278 (2019).
[20] Mofarahi M., Khojasteh Y., Khaledi H., Farahnak A., Design of CO2 Absorption Plant for Recovery of CO2 from Flue Gases of Gas Turbine. Energy, 33(8): 1311-1319 (2008).
[21] Koohestanian E., Sadeghi, J., Mohebbi-Kalhori D., Shahraki F., Samimi A., A Novel Process for CO2 Capture from the Flue Gases to Produce Urea and Ammonia. Energy, 144: 279-285 (2018).
[22] Wall T., Stanger R., Liu Y., Gas Cleaning Challenges for Coal-Fired Oxy-Fuel Technology with Carbon Capture and Storage. Fuel, 108: 85-90 (2013).
[23] Osman M., Khan M.N., Zaabout A., Cloete S., Amini S.,  Review of Pressurized Chemical Looping Processes for Power Generation and Chemical Production with Integrated CO2 Capture. Fuel Processing Technology, 214: 106684 (2021).
[24] Koohestanian E., Shahraki F., Review on Principles, Recent Progress, and Future Challenges for Oxy-Fuel Combustion CO2 Capture Using Compression and Purification Unit. Journal of Environmental Chemical Engineering, 9(4): 105777 (2021).
[25] Wang,, M., Lawal A., Stephenson P., Sidders J., Ramshaw C., Post-Combustion CO2 Capture with Chemical Absorption: A State-of-the-Art Review. Chemical Engineering Research and Design, 89(9): 1609-1624 (2011).
[26] Fu C., Gundersen T., Techno-Economic Analysis of CO2 Conditioning Processes in a Coal Based Oxy-Combustion Power Plant. International journal of greenhouse gas control, 9: 419-427 (2012).
[27] Koohestanian E., Samimi A., Mohebbi-Kalhori D., Sadeghi J., Sensitivity Analysis and Multi-Objective Optimization of CO2CPU Process Using Response Surface Methodology. Energy, 122: 570-578 (2017).
[28] Chansomwong A., Zanganeh K.E., Shafeen A., Douglas P.L., Croiset E., Ricardez-Sandoval L.A.,  Dynamic Modelling of a CO2 Capture and Purification Unit for an Oxy-Coal-Fired Power Plant. International Journal of Greenhouse Gas Control, 22: 111-122 (2014).
[31] API, R., 521. Recommended Practice, 521 (1997).
[32] Xu M.-X., Wu H.B., Wu Y.C., Wang H.X., Ouyang H.D., Lu Q., Design and Evaluation of a Novel System for the Flue Gas Compression and Purification from the Oxy-Fuel Combustion Process. Applied energy, 285: 116388 (2021).
[33] Tumsa T.Z., Lee S.H., Normann F., Andersson K., Ajdari S., Yang W., Concomitant Removal of NOx and SOx from a Pressurized Oxy-Fuel Combustion Process Using a Direct Contact Column. Chemical Engineering Research and Design, 131: 626-634 (2018).
[34] Kolster C., Mechleri E., Krevor S., Dowell N.M., The Role of CO2 Purification and Transport Networks in Carbon Capture and Storage Cost Reduction. International Journal of Greenhouse Gas Control, 58: 127-141 (2017).
[35] Rochelle, G.T., Amine Scrubbing for CO2 Capture. Science, 325(5948): 1652-1654 (2009).
[36] Jung J., Jeong Y.S., Lee U., Lim Y., Han C., New Configuration of the CO2 Capture Process Using Aqueous Monoethanolamine for Coal-Fired Power Plants. Industrial & Engineering Chemistry Research, 54(15): 3865-3878 (2015).
[37] Veawab A., Tontiwachwuthikul P., Chakma A., Corrosion Behavior of Carbon Steel in the CO2 Absorption Process Using Aqueous Amine Solutions. Industrial & engineering chemistry research, 38(10): 3917-3924 (1999).
[38] Gomes J., Santos S., Bordado J., Choosing Amine-Based Absorbents for CO2 Capture. Environmental technology, 36: 19-25 (2015).
[39] Aspen Plus, Aspen Plus Documentation Version V7. 3. Aspen Tech, Cambridge, MA, USA, (2011).
[40] Koohestanian E., Sadeghi J., Mohebbi Kalhori D., Shahraki F., Samimi A., New Process Flowsheet for CO2 Compression and Purification Unit; Dynamic Investigation and Control. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(2): 593-604 (2021).
[41] ASME Code, ASME Section VIII, Division 1. Rules for Construction of Pressure Vessels, The American Society of Mechanical Engineers, (2013.(
[42] Aresta M., Dibenedetto A., Angelini A., The Changing Paradigm in CO2 Utilization. Journal of CO2 Utilization, 3: 65-73 (2013).
[43] Zare V., Mahmoudi S.M.S., Yari M., Amidpour M., Thermoeconomic Analysis and Optimization of an Ammonia-Water Power/Cooling Cogeneration Cycle. Energy, 47(1): 271-283 (2012).
[44] Omidvar M., Koohestanian E., Ramezani Azghandi O., Synthesis and Statistical Analysis of Changing Size of Nano-structured PbO2 during Mechanical Milling Using Taguchi Methodology. Journal of Particle Science & Technology, 2(1): 49-54 (2016).
[45] Azad F.N., Ghaedi M., Asfarama A., Jamshidi A., Hassanid G., Goudarzie A., Azqhandif M.H.A., Ghaedig A., Optimization of the Process Parameters for the Adsorption of Ternary Dyes by Ni Doped FeO (OH)-NWs-AC Using Response Surface Methodology and an Artificial Neural Network. RSC Advances, 6(24): 19768-19779 (2016).
[46] Mamourian M., Shirvan K.M., Mirzakhanlari S., Rahimi A.B., Vortex Generators Position Effect on Heat Transfer and Nanofluid Homogeneity: A Numerical Investigation and Sensitivity Analysis. Applied Thermal Engineering, 107: 1233-1247 (2016).
[47] Shirvan K.M., Mirzakhanlari S., Chamkha A.J., Mamourian M., Numerical Simulation and Sensitivity Analysis of Effective Parameters on Natural Convection and Entropy Generation in a Wavy Surface Cavity Filled with a Nanofluid Using RSM. Numerical Heat Transfer, Part A: Applications, 1-21 (2016).
[48] Sun Y., Wei J., Zhang J.P., Yang G., Optimization Using Response Surface Methodology and Kinetic Study of Fischer-Tropsch Synthesis Using SiO2 Supported Bimetallic Co-Ni Catalyst. Journal of Natural Gas Science and Engineering, 28: 173-183 (2016).
[49] Myers R.H., Montgomery D.C., Anderson-Cook C.M., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons (2016)
[50] Morgan E., Chemometrics: Experimental Design. 41: John Wiley & Son Ltd (1995).
[51] Montgomery D.C., Design and Analysis of Experiments, John Wiley & Sons (2008).
[52] De Visser E., Hendriks C., Barrio M., Mølnvik M.J.,Koeijer G., Liljemark S., Gallo Y.L., Dynamis CO2 Quality Recommendations. International Journal of Greenhouse Gas Control, 2(4): 478-484 (2008).
[53] Pipitone G., Bolland O., Power Generation with CO2 Capture: Technology for CO2 Purification. International Journal of Greenhouse Gas Control,. 3(5): 528-534 (2009).