Investigating the Development of Hybrid Solution-Diffusion and Film Theory Method in Forward Osmosis Membrane Modeling

Document Type : Research Article


Chemical Engineering, Iranian Research Organization for Science and Technology (IROST), Tehran, IRAN


Process simulation, in both laboratory and industrial scales, is a method that, if it be capable enough to close the gap between the computational results and the operational results, it can help to understand and optimize these processes. The basis of valid simulation is the knowledge of the models and equations related to the physio-chemical properties and the ability to review and reduce the limiting assumptions of the process under investigation. For the mathematical modeling of mass transfer phenomena through the membrane, different models with various efficiency and accuracy are presented. According to the basic concepts of solution-diffusion theory, this theory has the potential to simulate osmotic membrane processes, including forward osmosis, as a desalination process. In this paper, an overview on the development of mathematical models for forward osmosis and how to determine its parameters by the empirical method is presented. The results showed that the Bui et al. model is the complete model for calculating water flux by considering all different external and internal concentration polarization types. On the other hand, the main parameters of the membrane (water and solute permeability and structural parameter) can be calculated by numerical calculations and experimental results using the proposed Tiraferri et al. method.


Main Subjects

[2] Amarasinghe U.A., Smakhtin V., "Global Water Demand Projections: Past, Present and Future". (2014).
[3] Nikazar M., Jamshidi M., Reuse of Refinery Treated Wastewater in Cooling Towers. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 27(4): 1–7 (2008).
[4] Garcia-Castello E.M., McCutcheon J.R., Elimelech M., Performance Evaluation of Sucrose Concentration Using Forward Osmosis. Journal of Membrane Science, 338(1–2): 61–66 (2009).
[5] دهنوی س.م., شکرالله زاده س., بررسی جداسازی نمک و بازیابی آب در فرایند اسمز معکوس آب دریا با استفاده از آب خنک کننده نیروگاه. نشریه علوم و مهندسی جداسازی, 10(2): 1–10 (1397)
[6] Nematzadeh M., Samimi A., Shokrollahzadeh S., Application of Sodium Bicarbonate as Draw Solution in Forward Osmosis Desalination: Influence of Temperature and Linear Flow Velocity. Desalination and Water Treatment, 57(44): 20784–20791 (2016).
[7] Shokrgozar Eslah S., Shokrollahzadeh S., Moini Jazani O., Samimi A., Forward Osmosis Water Desalination: Fabrication of Graphene Oxide-Polyamide/Polysulfone Thin-Film Nanocomposite Membrane with High Water Flux and Low Reverse Salt Diffusion. Separation Science and Technology, 53(3): 573–583 (2018).
[8] McGinnis R.L., Elimelech M., Global Challenges in Energy and Water Supply: The Promise of Engineered Osmosis. Environmental Science and Technology, 42(23): 8625–8629 (2008).
[9] Achilli A., Cath T.Y., Childress A.E., Power Generation with Pressure Retarded Osmosis: An Experimental and Theoretical Investigation. Journal of Membrane Science, 343(1–2): 42–52 (2009).
[10] باهوش م., شکرالله زاده س., کاشی ا., مروری بر کاربردهای فرآیند غشایی اسمز مستقیم. نشریه مهندسی شیمی ایران, 15(89): 18–34 (1395)
[11] باهوش م., شکرالله زاده س., کاشی ا., اثر پلاریزاسیون غلظتی در فرآیند شیرین‌سازی آب به روش اسمز مستقیم (مروری). علوم و تکنولوژی محیط زیست, (1395)
[12] Mehdizadeh H., Modeling of Transport Phenomena in Reverse Osmosis Membranes. Ph.D thesis in Chemical Engineering.McMaster University, CANADA, (1990).
[13] Wijmans J.G., Baker R.W., The Solution-Diffusion Model: A Review. Journal of Membrane Science, 107(1–2): 1–21 (1995).
[14] Bahoosh M., Kashi E., Shokrollahzadeh S., Rostami K., Comparison the Performance of Different Reverse Osmosis Membrane Modules by CFD Modeling. Iranian Journal of Chemical Engineering(IJChE), 16(1): 101–116 (2019).
[15] Gruber M.F., Aslak U., Hélix-Nielsen C., Open-Source CFD Model for Optimization of Forward Osmosis and Reverse Osmosis Membrane Modules. Separation and Purification Technology, 158: 183–192 (2016).
[16] Seo J., Kim Y.M., Chae S.H., Lim S.J., Park H., Kim J.H., An Optimization Strategy for a Forward Osmosis-Reverse Osmosis Hybrid Process for Wastewater Reuse and Seawater Desalination: A Modeling Study. Desalination, 463(March): 40–49 (2019).
[18] Wang J., Dlamini D.S., Mishra A.K., Pendergast M.T.M., Wong M.C.Y.Y., Mamba B.B., Freger V., Verliefde A.R.D., Hoek E.M.V., A critical review of transport through osmotic membranes. Journal of Membrane Science, 454: 516–537 (2014).
[19] Vaidya S.Y., Simaria A.V., Murthy Z.V.P., Reverse Osmosis Transport Models Evaluation: A New Approach. Indian Journal of Chemical Technology, 8(5): 335–343 (2001).
[20] Singh R.P., Medina A.G., "Food Properties and Computer-Aided Engineering of Food Processing Systems". Springer Netherlands, (2012).
[21] Taherian M., Mousavi S.M., Modeling and Simulation of Forward Osmosis Process Using Agent-Based Model System. Computers & Chemical Engineering, 100: 104–118 (2017).
[22] Gruber M.F., Johnson C.J., Tang C.Y., Jensen M.H., Yde L., Hélix-Nielsen C., Computational Fluid Dynamics Simulations of Flow and Concentration Polarization in Forward Osmosis Membrane Systems. Journal of Membrane Science, 379(1–2): 488–495 (2011).
[23] Fletcher D.F., Wiley D.E., A Computational Fluids Dynamics Study of Buoyancy Effects in Reverse Osmosis. Journal of Membrane Science, 245(1–2): 175–181 (2004).
[24] Zhao Y., Modeling of Membrane Solute Mass Transfer in NF/RO Membrane Systems, University of Central Florida, (2004).
[27] Baker R.W., "Membrane Technology and Applications". Chichester, UK: John Wiley & Sons, Ltd, (2004).
[28] Marchetti P., Solomon M.F.J., Szekely G., Livingston A.G., Molecular Separation with Organic Solvent Nano filtration : A Critical Review. Chemical Review, 114: 10735–10806 (2014).
[29] Lee K.L., Baker R.W., Lonsdale H.K., Membranes for Power Generation by Pressure-Retarded Osmosis. Journal of Membrane Science, 8(2): 141–171 (1981).
[30] Loeb S., Titelman L., Korngold E., Freiman J., Effect of Porous Support Fabric on Osmosis Through a Loeb-Sourirajan Type Asymmetric Membrane. Journal of Membrane Science, 129(2): 243–249 (1997).
[31] McCutcheon J.R., Elimelech M., Influence of Concentrative and Dilutive Internal Concentration Polarization on Flux Behavior in Forward Osmosis. Journal of Membrane Science, 284(1–2): 237–247 (2006).
[32] Mccutcheon J.R., Elimelech M., Modeling Water Flux in Forward Osmosis: Implications for Improved Membrane Design. AIChE Journal, 53(7): 1736–1744 (2007).
[34] Tang C.Y., She Q., Lay W.C.L., Wang R., Fane A.G., Coupled Effects of Internal Concentration Polarization and Fouling on Flux Behavior of Forward Osmosis Membranes During Humic Acid Filtration. Journal of Membrane Science, 354(1–2): 123–133 (2010).
[35] Zhao S., Zou L., Relating Solution Physicochemical Properties to Internal Concentration Polarization in Forward Osmosis. Journal of Membrane Science, 379(1–2): 459–467 (2011).
[38] Gruber M.F., Johnson C.J., Tang C., Jensen M.H., Yde L., Helix-Nielsen C., Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries. Membranes, 2(4): 764–782 (2012).
[39] McCutcheon J.R., McGinnis R.L., Elimelech M., A Novel Ammonia—Carbon Dioxide Forward (Direct) Osmosis Desalination Process. Desalination, 174(1): 1–11 (2005).
[40] Geraldes V.V., Semião V., De Pinho M.N., Flow and Mass Transfer Modelling of Nanofiltration. Journal of Membrane Science, 191(1–2): 109–128 (2001).
[41] Tiraferri A., Yip N.Y., Straub A.P., Romero-Vargas Castrillon S., Elimelech M., A Method for the Simultaneous Determination of Transport and Structural Parameters of Forward Osmosis Membranes. Journal of Membrane Science, 444: 523–538 (2013).