Modeling of Remove Cefixime by Fenton Method with Artificial Neural Network

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Eyvan-e-Gharb Branch, Islamic Azad University, Eyvan-e-Gharb, I.R.IRAN

2 Department of Chemical Engineering, Ilam Branch, Islamic Azad University, Ilam, I.R.IRAN

Abstract

The aim of this study was to model the removal efficiency of cefixime by the Fenton method using a neural network. This model predicts experimental results well. In this model, the amount of hydrogen peroxide, iron catalyst, cefixime removal time, initial concentration of cefixime, and pH are the input parameters. The output variable is the removal percentage of cefixime. Total error squares (SSE), mean the square root of error (RMSE), adjusted coefficient of determination (), and coefficient of determination   in determining the number of optimal neurons in the middle of the performance index. According to the obtained results, the neural network model was able to predict the absorption efficiency with the sigmoid tangent transfer function in the hidden layer and the linear stimulus transfer function in the output layer. Also, the results of modeling the neural network with org-art showed that the grid with a 1-13-5 arrangement (5 neurons in the input layer, 13 neurons in the hidden layer, and 1 neuron in the output layer) had the best result in predicting the output. The correlation coefficients of all the levels of training, validation, and test 0.3 were 0.99436, 0.9993, and 0.96901, respectively. To predict the trend of changes, neural network tools have been used in MATLAB software.

Keywords

Main Subjects


[2] Jain R., Gupta V.K., Jadon N., Radhapyari K., Volta Metric Determination of Cefixime in pH Armaceuticals and Biological Fluids, Anal. Biochem., 407(1): 79-88 (2010).
[4] Nithyanandam R., Saravanane R., Treatment of Pharmaceutical Sludge by Fenton Oxidation Process, Int. J. Chem. Eng. Appl., 4(6): 359-364 (2013).
[5] Shokri A., Removal of Acid Red 33 from Aqueous Solution Fenton and Photo Fenton Processes, J. Chem. Health Risks., 7(2): 119–131 (2017).
[6] Azimi S.C., Shirini F., Advanced Oxidation Process as a Green Technology for Dyes Removal from Wastewater: A Review, Iran. J. Chem. Chem. Eng., 40(5): 1467–1489(2021).
[7] Shokri A., Bayat A., Mahanpoor K., Employing Fenton-Like Process for the Remediation of Petrochemical Wastewater through Box–Behnken Design Method, Desalin. Water Treat., 166: 135-143 (2019).
[8] Bobu M., Yediler A., Siminiceanu I., Schulte-Hostede S., Degradation Studies of Ciprofloxacin on a Pillared Iron Catalyst. Appl. Catal., 83(1-2): 15-23 (2008).
[9] Elmoll E.S., Chaudhuri M., Degradation of the Antibiotics Amoxicillin, Ampicillin and Cloxacillin in Aqueous Solution by the Photo-Fenton Process, J. Hazard. Mater., 172(2-3): 1476–1481 (2009).
[10] شمس‌خرم‌آبادی ق.ا.، بلقدر ع.، گودینی ح.، آل­نبی املشی س.ف.، حاتمی س.، گودرزی ع.، دانش بحرین م.ع.، شعبانی ح.،  بررسی فرایند اکسایش پیشرفته UV/H2O2 در حذف آنتی‌بیوتیک سفتریاکسون از محیط آبی، فصلنامه علمی پژوهشی دانشگاه علوم پزشکی لرستان، (1)16:  23 تا 31 (1393).
[11] Heidari Z., Motevasel M., Jaafarzadeh N.A., Application of Electro-Fenton Process to the Removal of Pentachlorophenol from Aqueous Solutions, Iran. J. Oil & Gas Sci. Technol., 4(4): 76-87 (2015).
[12] Teymoori F., Pesarakloo V., Ghafourian H., Kashefiol Asl M., Investigation of using Fenton Oxidation Process for Ampicillin and Ciprofloxacin Removal from Hospital Wastewater, Ebnesina IRIAF Health. Admin., 19(2): 36-42 (2017).
[13] Mohammadi F., Rahimi S., Yavari Z., Application of Artificial Neural Network in Bio Sorption Modeling of Chromium (VI) from Aqueous Solutions, Iran. J. Health Environ., 8(4): 433-46 (2016).
[14] پارسازاده ن.، یوسفی ف.، قائدی م.، کریمی ر.، بروسان ف.، بهینه‌سازی فرایند جذب سطحی رنگ دی سولفین بلو توسط نانوذره ZnO-Cr نشانده شده بر روی کربن فعال با استفاده از روش پاسخ سطح و مدل‌سازی با کمک شبکه عصبی مصنوعی، نشریه شیمی و مهندسی شیمی ایران، (4)37: 37 تا 54 (1397).
[15] Asrari E., Khosravi V., Application of Artificial Neural Network for Modeling Chromium (VI) Removal using Iron Oxide Nanoparticles, J. Environ. Water Eng., 3(1): 30–39 (2017).
[17] Dehghani S., Jonidi jafari A., Farzadkia M., Gholami M., Investigation of the Efficiency of Fenton’s Advanced Oxidation Process in Sulfadiazine Antibiotic Removal from Aqueous Solutions, Arak Med. Univ. J., 15(7): 19-29 (2012).
[19] Klavarioti M., Mantzavinos D., Kassinos D., Removal of Residual Pharmaceuticals from Aqueous Systems by Advanced Oxidation Processes, Environ. Int., 35(1): 402-417 (2009).
[20] Kümmerer K., Antibiotics in the Aquatic Environment - A Review, Chemosphere, 75(4): 417-434 (2009).
[21] Košutić K., Dolar D., Ašperger D., Kunst B., Removal of Antibiotics from a Model Wastewater by RO/NF Membranes, Sep. Purif. Technol., 53(3): 244-249 (2007).
[22] Poorsharbaf F., Raouf F., Dadvand A., A Review on Diclofenac Removal from Aqueous Solution Emphasizing on Adsorption Method, Iran. J. Chem. Chem. Eng., 39(1): 141-154 (2020).
[23] Yazdanbakhsh A., Paseban A., Ghorbanpoor R., Inhibitory Effects of the Amoxicillin on Treatment Efficiency of Synthetic Wastewater in a Sequencing Batch Reactor, JNKUMS., 7(3): 669-682 (2015).
[24] Samarghandi M.R., Leili M., Harati R., Tarlani Azar M., Maleki S., Efficiency of Electro/Persulfate Process by Iron Electrode in Removing Furfural from Aqueous Solution, J. Mazandaran Univ. Med. Sci., 24(19): 95-108 (2014).
[25] Uslu M., BalcIoglu I.A., Comparison of the Ozonation and Fenton Process Performances for the Treatment of Antibiotic Containing Manure, Sci. Total Environ., 407(11): 3450-8 (2009).
[26] Manshouri M., Yazdanbakhsh A., Sardar M., Sheykh Mohammadi A., Investigation of Effective Factors for Fenton Like Process in Para-Chlorophenol Removal from Aqueous Solutions, Iran J. Health & Environ., 3(4): 381-388 (2011).
[27]  Tabatabaei F., Asadi-Ghalhari M.,  Esmaeili R., Modeling and Optimization of Cefixime Removal from Aqueous Solutions by Potato Starch using Response Surface Methodology (RSM), J. Health. Res. Commun., 6(2): 27-37 (2020).
   [28] کریمی ب.، احرامپوش م.ح.، ابراهیمی ا.، مختاری م.، بررسی استفاده از فرایند اکسایش پیشرفته در حذف ترکیب‌های نیتروژن‌دار از شیرابه کارخانه کمپوست اصفهان، نشریه شیمی و مهندسی شیمی، (3و4)31: 33 تا 38 (1391).
[29] Munter R., Advanced Oxidation Processes-Current Status and Prospects, Proc. Estoninan. Acad. Sci. Chem., 50(2): 59-80 (2001).
[30] Meric S., Selcuk H., Belgiorno V., Acute Toxicity Removal in Textile Finishing Wastewater by Fenton’s Oxidation, Ozone and Coagulation–Flocculation Processes, J. Water Res., 39(6): 1147–1153 (2005).
[31] Noorossana R., Davanloo Tajbakhsh S., Saghaei A., An Artificial Neural Network Approach to Multiple Response Optimization, Int. J. Adv. Des. Manuf. Technol., 40(11): 1227-1238 (2009).
[32] Zare Abiane H., Evaluation of Ekbatan Wastewater Treatment Plant using Artificial Neural Network, J. Envirology., 12(40): 2-8 (2014).
[33] Pai T.Y., Tsai Y.P., Lo H.M., Tsai CH., Lin CY., Grey and Neural Network Prediction of Suspended Solids and Chemical Oxygen Demand in Hospital Wastewater Treatment Plant Effluent, J. Comput. Chem. Eng., 31(10): 1272-1281 (2007).
[34] Gluclu D., Dursun S., Advanced Neural Network Modelling of a Large Scale Wastewater Treatment Plant Operation, Bio. Process. Biosyst. Eng., 33: 1051-1058 (2010).
[35] Nasr M., Medhat A., Moustafa H., Kobrosy G., Application of Artificial Neural Network for the Prediction of EL-AGAMY Wastewater Treatment Plant Performance-Egypt, Alexandria Eng. J., 51(1): 37-43 (2012).
 [36] Nourani V., Elkiran G., Abba S., Wastewater Treatment Plant Performance Analysis using Artificial Intelligence–an Ensemble Approach, Water Sci. Technol., 78(10): 2064-2076 (2018).
‌[37] ندیری ع.ا.، اصغری مقدم ا.، شکری س.، بررسی کارایی تصفیه خانه پساب تبریز با استفاده از مدل‌های هوش مصنوعی، محیط شناسی، (4)40: 827 تا 844 (1393).
[38] خادمی­کیا س.، حقی زاده ع.، گودینی ح.، شمس خرم آبادی ق.ا.، ارزیابی عملکرد تصفیه خانه پساب خرم آباد توسط شبکه هوش مصنوعی، فصلنامه علمی پژوهشی دانشگاه علوم پزشکی لرستان، (3)18: 13 تا 23 (1395).
 [40] ذوقی م.ج.، سعیدی م.، برآورد میزان شیرابه مراکز دفن زباله با استفاده از شبکه عصبی مصنوعی، آب و پساب، (1)۲۲: ۷۶ تا ۸۴ (1390).
[41] Kadhim S., Hamed A., Mubdir N., Abdullah M., Kadhim S., Spectrophotometer Determination of Cefixime in Pure form and Pharmaceutical Preparation by using Cloud Point Extraction, Baghdad Sci. J., 17(2): 2078-8665 (2020).
[42] Kumar A., Kishore L., Nair A., Kaur N., Estimation of Cefixime and Ofloxacin in its Pharmaceutical Dosage form by Spectrophotometric Methods, J. Pharm. Res., 4(6): 1864-1866 (2011).
[43]Attimarad M., Al-Dhubiab B., Alhaider I., Nair A., Harsha S., Mueen K., Simultaneous Determination of Moxifloxacin and Cefixime by First and Ratio First Derivative Ultraviolet Spectrophotometry, Chem. Cent. J., 6(105) :2-7 (2012).
[44] Shankar D., Sushma K., Laxmi R., Reddy M., Murthy T., UV and Visible Spectrophotometric Methods for the Determination of Cefixime, Indian Drugs, 38(12): 617–619 (2001)
[45] Dutta J., Ahmad Mala A., Removal of Antibiotic from the Water Environment by the Adsorption Technologies, Water Sci. Techno., 82(3): 401-426 (2020).
 [47] Rahmani K., Faramarzi M.A., Mahvi A.H., Gholami M., Esrafili A., Forootanfar H., Farzadkia M., Elimination and Detoxification of Sulfathiazole and Sulfamethoxazole Assisted by Laccase Immobilized on Porous Silica Beads, Int. Biodeterior. Biodegrad., 97: 107-114 (2015).
[48] Xu R., Li Y., Li H., Degradation of Melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 Processes, Sep. Purif. Technol., 68(2): 261-266 (2009).
[50]  Heidari M., Malakootian M.,  Asadi F, Removal of Phosphor from Aqueous Solution by Fenton Oxidation Process, J. Env. Sci. Tech., 19(2): 63-72(2017).
[51]شیخ محمدی ا.، منشوری م.، یزدانبخش ح.، سردار م.، بررسی کارایی فرایند شبه فنتون در حذف 4-کلروفنل از محیط‌‌های آبی،  فصلنامه علمی پژوهشی دانشکده بهداشت یزد، (1)12: 10 تا 17 (1392).
[52] پناهی ح.، کمانی ح.، سنچولی ف.، هاونگی م.، بررسی کارایی فرایند اولتراسونیک/فنتون در حذف آنتی‌بیوتیک پنیسیلین جی از محیط‌های آبی به روش سطح-پاسخ، مجله مهندسی بهداشت محیط، (1)5: 83 تا 98 (1396).
[53] Ahmadzadeh S., Dolatabadi M., Removal of Acetaminophen from Hospital Wastewater using Electro-Fenton Process, Environ. Earth Sci., 77: 53-63 (2018).
[54] Homem V., Santos L., Degradation and Removal Methods of Antibiotics from Aqueous Matrices–A Review, J. Environ. Manage., 92(10): 2304-2347(2011).
[55] مهردادی ن.، نبی بیدهندی غ.ر.، رودباری ع.ا.، استفاده از فرایند فنتون برای کاهش حجم لجن زیستی صنایع، مجله دانش و تندرستی دانشگاه علوم پزشکی شاهرود، (3)12: 48 تا 54 (1396).
[56] Manuel E., Correa C., María F., Franco A., Fernández-González C., Godini H., Almasian M., Advanced Oxidation Processes for the Removal of Antibiotics from Water, Desalin. Water Treat., 55(4): 1068-1077 (2015).
[57] Zhai J., Ma H., Liao J., Rahaman M., Yang Z., Comparison of Fenton, Ultraviolet–Fenton and Ultrasonic–Fenton Processes on Organics and Colour Removal from Pre-Treated Natural Gas Produced Water, Int. J. Environ. Sci. Techno., 15(11): 2411-2422 (2018).
[59] Belghadr I., Shams Khorramabadi G., Godini H., Almasian M., The Removal of the Cefixime Antibiotic from Aqueous Solution using an Advanced Oxidation Process (UV/H2O2), Desalin. Water Treat., 55(4): 1068-1077 (2015).