Synthesis of BixOyClz/rGO-NiFe2O4 Magnetic Nanophotocatalyst via Hybrid Ultrasound-Solvothermal Route for Elimination of Ofloxacin and Ciprofloxacin Antibiotic Contaminants and Rhodamine B and Acid Orange 7 Color Pollutants from Aqueous Solutions

Document Type : Research Article

Authors

Chemical Engineering Faculty, Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, Sahand New Town, Tabriz, I.R.IRAN.

Abstract

In this study, BixOyClz/rGO-NiFe2O4 magnetic nanophotocatalyst was synthesized using the hybrid ultrasound-solvothermal method. To compare the BixOyClz/rGO and NiFe2O4 samples were also fabricated. The properties of these nanophotocatalysts were determined using various analyses such as XRD, FESEM, EDX, BET-BJH, DRS and VSM. The results obtained confirmed the correctness of the syntheses. According to the VSM analysis, the saturation magnetization of BixOyClz/rGO-NiFe2O4 nanophotocatalyst was obtained about 3.8 emu/g. Moreover, regarding the BET-BJH results, the total open pore volume and specific surface area of this sample was obtained 0.5 cm3/g and 130 m2/g. Finally, its photocatalytic performance was evaluated in the elimination of the ofloxacin and ciprofloxacin, as antibiotic contaminants, and rhodamine B and acid orange 7, as color pollutants. Results indicated the excellent activity of this nanophotocatalyst. So that, after 180 min, the elimination efficiency was gained at about 98.5, 100, 100 and 96.5% for ofloxacin, ciprofloxacin, rhodamine B and acid orange 7, respectively. These consequences were devoted the decrease of band gap and increasing the light absorption range, improving the separation and transmission of charge carriers and reducing recombination rate of them increasing the surface absorption of contaminant molecules as a result of the presence of rGO and the proper dispersion of BOC due to using of ultrasound waves and the breaking of clusters and the increment of accessible active sites.

Keywords

Main Subjects


[2] Matamoros V., Arias C.A., Nguyen L.X., Salvadó V., Brix H., Occurrence and Behavior of Emerging Contaminants in Surface Water and a Restored Wetland, Chemosphere, 88(9): 1083-1089 (2012).
[3] Richardson S.D., Kimura S.Y., Water Analysis: Emerging Contaminants and Current Issues, Anal. Chem., 88(1): 546-582 (2016).
[4] Bolong N., Ismail A., Salim M.R., Matsuura T., A Review of the Effects of Emerging Contaminants in Wastewater and Options for Their Removal, Desalination, 239(1): 229-246 (2009).
[5] Geissen V., Mol H., Klumpp E., Umlauf G., Nadal M., van der Ploeg M., van de Zee S.E., Ritsema C.J., Emerging Pollutants in the Environment: A Challenge for Water Resource Management, nt. Soil Water Conserv. Res., 3(1): 57-65 (2015).
[6] Yang G., Fan M., Zhang G., Emerging Contaminants in Surface Waters in China-a Short Review, Environ. Res. Lett., 9(7): 074018 (2014).
[7] Shi Z., Zhang Y., Shen X., Duoerkun G., Zhu B., Zhang L., Li M., Chen Z., Fabrication of G-C3N4/Biobr Heterojunctions on Carbon Fibers as Weaveable Photocatalyst for Degrading Tetracycline Hydrochloride under Visible Light, Chem. Eng. J., 386: 124010 (2020).
[8] Liu F., Sun Y., Gu J., Gao Q., Sun D., Zhang X., Pan B., Qian J., Highly Efficient Photodegradation of Various Organic Pollutants in Water: Rational Structural Design of Photocatalyst Via Thiol-Ene Click Reaction, Chem. Eng. J., 381: 122631 (2020).
[11] Abbasi E., Haghighi M., Shokrani R., Shabani M., Copper Plasmon-Induced Cu-Doped Zno-Cuo Double-Nanoheterojunction: In-Situ Combustion Synthesis and Photo-Decontamination of Textile Effluents, Mater. Res. Bull., 129: 110880 (2020).
[12] Michael I., Hapeshi E., Michael C., Fatta-Kassinos D., Solar Fenton and Solar Tio2 Catalytic Treatment of Ofloxacin in Secondary Treated Effluents: Evaluation of Operational and Kinetic Parameters, Water Res, 44(18): 5450-5462 (2010).
[15] Zhai Y., Dai Y., Guo J., Zhou L., Chen M., Yang H., Peng L., Novel Biochar@CoFe2O4/Ag3PO4 Photocatalysts for Highly Efficient Degradation of Bisphenol a under Visible-Light Irradiation, J. Colloid Interface Sci., 560: 111-121 (2020).
[17] Ateia M., Alalm M.G., Awfa D., Johnson M.S., Yoshimura C., Modeling the Degradation and Disinfection of Water Pollutants by Photocatalysts and Composites: A Critical Review, Sci. Total Environ., 698: 134197 (2020).
[20] Zhu J., Shen Y., Yu X., Guo J., Zhu Y., Zhang Y., A Facile Two-Step Method to Synthesize Immobilized CdS/BiOCl Film Photocatalysts with Enhanced Photocatalytic Activities, J. Alloys Compd., 771: 309-316 (2019).
[21] Li Q., Guan Z., Wu D., Zhao X., Bao S., Tian B., Zhang J., Z-Scheme BiOCl-Au-CdS Heterostructure with Enhanced Sunlight-Driven Photocatalytic Activity in Degrading Water Dyes and Antibiotics, ACS Sustain. Chem. Eng., 5(8): 6958-6968 (2017).
[22] Priya B., Shandilya P., Raizada P., Thakur P., Singh N., Singh P., Photocatalytic Mineralization and Degradation Kinetics of Ampicillin and Oxytetracycline Antibiotics using Graphene Sand Composite and Chitosan Supported BiOCl, J. Mol. Catal. A: Chem., 423: 400-413 (2016).
[23] Cheng J., Wang C., Cui Y., Sun Y., Zuo Y., Visible Light Photocatalytic Properties and Thermochromic Phenomena of Nanostructured Biocl Microspheres, J. Mater. Sci. Technol., 30(11): 1130-1133 (2014).
[24] Li F.-t., Wang Q., Wang X.-j., Li B., Hao Y.-j., Liu R.-h., Zhao D.-s., In-Situ One-Step Synthesis of Novel BiOCl/Bi24O31Cl10 Heterojunctions via Self-Combustion of Ionic Liquid with Enhanced Visible-Light Photocatalytic Activities, Appl. Catal., B, 150: 574-584 (2014).
[26] Jin X., Ye L., Wang H., Su Y., Xie H., Zhong Z., Zhang H., Bismuth-Rich Strategy Induced Photocatalytic Molecular Oxygen Activation Properties of Bismuth Oxyhalogen: The Case of Bi24O31Cl10, Appl. Catal., B, 165: 668-675 (2015).
[28] Moniz S.J., Shevlin S.A., Martin D.J., Guo Z.-X., Tang J., Visible-Light Driven Heterojunction Photocatalysts for Water Splitting–A Critical Review, Energy Environ. Sci., 8(3): 731-759 (2015).
[29] Samsudin M.F.R., Mahmood A., Sufian S., Enhanced Photocatalytic Degradation of Wastewater over rGO-TiO2/BiVO4 Photocatalyst under Solar Light Irradiation, J. Mol. Liq., 268: 26-36 (2018).
[30] Liu C., Li J., Sun L., Zhou Y., Liu C., Wang H., Huo P., Ma C., Yan Y., Visible-Light Driven Photocatalyst of CdTe/CdS Homologous Heterojunction on n-rGO Photocatalyst for Efficient Degradation of 2,4-Dichlorophenol, J. Taiwan Ins. of Chem. Eng., 93: 603-615 (2018).
[31] Appavu B., Thiripuranthagan S., Ranganathan S., Erusappan E., Kannan K., BiVO4 /n-rGO Nano Composites as Highly Efficient Visible Active Photocatalyst for the Degradation of Dyes and Antibiotics in Eco System, Ecotoxicol Environ Saf, 151: 118-126 (2018).
[32] Pan X., Zhao Y., Liu S., Korzeniewski C.L., Wang S., Fan Z., Comparing Graphene-Tio2 Nanowire and Graphene-TiO2 Nanoparticle Composite Photocatalysts, ACS Appl. Mater. Interfaces, 4(8): 3944-3950 (2012).
[34] Perera S.D., Mariano R.G., Vu K., Nour N., Seitz O., Chabal Y., Balkus Jr K.J., Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity, ACS Catal., 2(6): 949-956 (2012).
[35] Zhang H., Lv X., Li Y., Wang Y., Li J., P25-Graphene Composite as a High Performance Photocatalyst, ACS Nano, 4(1): 380-386 (2009).
[36] Gautam S., Shandilya P., Priya B., Singh V.P., Raizada P., Rai R., Valente M., Singh P., Superparamagnetic MnFe2O4 Dispersed over Graphitic Carbon Sand Composite and Bentonite as Magnetically Recoverable Photocatalyst for Antibiotic Mineralization, Sep. Purif. Technol., 172: 498-511 (2017).
[38] Yang H.G., Liu G., Qiao S.Z., Sun C.H., Jin Y.G., Smith S.C., Zou J., Cheng H.M., Lu G.Q., Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant {001} Facets, J Am Chem Soc, 131(11): 4078-4083 (2009).
[39] Gedanken A., Using Sonochemistry for the Fabrication of Nanomaterials, Ultrason. Sonochem., 11(2): 47-55 (2004).
[40] Zhang D., Pu X., Du K., Yu Y.M., Shim J.J., Cai P., Kim S.I., Seo H.J., Combustion Synthesis of Magnetic Ag/NiFe2O4 Composites with Enhanced Visible-Light Photocatalytic Properties, Sep. Purif. Technol., 137: 82-85 (2014).
[42] Liu H., Cao W.-R., Su Y., Chen Z., Wang Y., Bismuth Oxyiodide-Graphene Nanocomposites with High Visible Light Photocatalytic Activity, J. Colloid Interface Sci., 398: 161-167 (2013).
[43] Liu H., Su Y., Chen Z., Jin Z., Wang Y., Graphene Sheets Grafted Three-Dimensional BiOBr0.2I0.8 Microspheres with Excellent Photocatalytic Activity under Visible Light, J. Hazard. Mater., 266: 75-83 (2014).
[44] Liu Y., Yuan X., Wang H., Chen X., Gu S., Jiang Q., Wu Z., Jiang L., Zeng G., Solvothermal Synthesis of Graphene/BiOCl0.75Br0.25 Microspheres with Excellent Visible-Light Photocatalytic Activity, RSC Adv., 5(42): 33696-33704 (2015).
[45] Ai Z., Ho W., Lee S., Efficient Visible Light Photocatalytic Removal of No with BiOBr-Graphene Nanocomposites, J. Phys. Chem. C, 115(51): 25330-25337 (2011).
[46] Gao F., Zeng D., Huang Q., Tian S., Xie C., Chemically Bonded Graphene/Biocl Nanocomposites as High-Performance Photocatalysts, Phys. Chem. Chem. Phys., 14(30): 10572-10578 (2012).
[47] Jiang T., Li J., Sun Z., Liu X., Lu T., Pan L., Reduced Graphene Oxide as Co-Catalyst for Enhanced Visible Light Photocatalytic Activity of BiOBr, Ceram. Int., 42(15): 16463-16468 (2016).
[48] Yang Y., Luo L., Xiao M., Li H., Pan X., Jiang F., One-Step Hydrothermal Synthesis of Surface Fluorinated TiO2/Reduced Graphene Oxide Nanocomposites for Photocatalytic Degradation of Estrogens, Mater. Sci. Semicond. Process., 40: 183-193 (2015).
[49] Lv D., Zhang D., Liu X., Liu Z., Hu L., Pu X., Ma H., Li D., Dou J., Magnetic Nife2o4/Biobr Composites: One-Pot Combustion Synthesis and Enhanced Visible-Light Photocatalytic Properties, Sep. Purif. Technol., 158: 302-307 (2016).
[50] Bhatia V., Ray A.K., Dhir A., Enhanced Photocatalytic Degradation of Ofloxacin by Co-Doped Titanium Dioxide under Solar Irradiation, Sep. Purif. Technol., 161: 1-7 (2016).
[52] Rahman Q.I., Ahmad M., Misra S.K., Lohani M., Effective Photocatalytic Degradation of Rhodamine B Dye by ZnO Nanoparticles, Mater. Lett., 91: 170-174 (2013).
[53] Cetinkaya T., Neuwirthová L., Kutláková K.M., Tomášek V., Akbulut H., Synthesis of Nanostructured TiO2/SiO2 as an Effective Photocatalyst for Degradation of Acid Orange, Appl. Surf. Sci., 279: 384-390 (2013).
[54] Hama Aziz K.H., Miessner H., Mueller S., Kalass D., Moeller D., Khorshid I., Rashid M.A.M., Degradation of Pharmaceutical Diclofenac and Ibuprofen in Aqueous Solution, A Direct Comparison of Ozonation, Photocatalysis, and Non-Thermal Plasma, Chem. Eng. J., 313: 1033-1041 (2017).
[57] Xiao J., Xie Y., Nawaz F., Jin S., Duan F., Li M., Cao H., Super Synergy between Photocatalysis and Ozonation Using Bulk g-C3N4 as Catalyst: A Potential Sunlight/O3/g-C3N4 Method for Efficient Water Decontamination, Appl. Catal., B, 181: 420-428 (2016).
[58] Rong X., Qiu F., Jiang Z., Rong J., Pan J., Zhang T., Yang D., Preparation of Ternary Combined ZnO-Ag2O/Porous g-C3N4 Composite Photocatalyst and Enhanced Visible-Light Photocatalytic Activity for Degradation of Ciprofloxacin, Chem. Eng. Res. Des., 111: 253-261 (2016).
[59] Zhang S., Li J., Zeng M., Zhao G., Xu J., Hu W., Wang X., In Situ Synthesis of Water-Soluble Magnetic Graphitic Carbon Nitride Photocatalyst and its Synergistic Catalytic Performance, ACS Appl. Mater. Interfaces, 5(23): 12735-12743 (2013).
[60] Zhang H., Song S., Sun L., Zhao Q., Lu H., Comparative Study on Ciprofloxacin Removal in Sulfur-Mediated Biological Systems, Chin. Chem. Lett., 31(6): 1432-1437 (2020).
[61] Jia X., Xie L., Li Z., Li Y., Ming R., Zhang Q., Mi X., Zhan S., Photo-Electro-Fenton-Like Process for Rapid Ciprofloxacin Removal: The Indispensable Role of Polyvalent Manganese in Fe-Free System, Sci. Total Environ., 768: 144368 (2021).
[62] Malakootian M., Ahmadian M., Removal of Ciprofloxacin from Aqueous Solution by Electro-Activated Persulfate Oxidation using Aluminum Electrodes, Water Sci Technol, 80(3): 587-596 (2019).