The Investigation and Evaluation of the Effect of Carbonated Chloride Solution on the Dynamic Interfacial Tension of Acidic Crude Oil

Document Type : Research Article

Authors

School of Chemical Engineering, Enhanced Oil Recovery (EOR) and Gas Processing Research Centre, Babol Noshirvani University of Technology, Babol, I.R.IRAN

Abstract

Nowadays, carbonated water injection is one of the effective methods of increasing oil extraction from crude oil reservoirs. In this method, the effect of CO2, temperature, and pressure on dynamic interfacial tension (DIFT) of crude oil/carbonated brine is significant. In this study, using a sample of acidic crude oil with a total acidity of 1.5 g/mgKOH and in the presence of sodium carbonated chloride solution and potassium carbonated chloride solution, the effects of each of the above parameters on DIFT over a wide range of temperatures (30 °C -80 °C) and pressure (500 psi-4000 psi) are examined. Besides, the adsorption time of natural surfactants in crude oil, namely asphaltene and resin on the interface, related to the carbonated aqueous solution/crude oil, was calculated using an experimental descending model (Mono-Exponential Decay). The results included The interfacial tension and adsorption time are compared with the results obtained in the absence of carbon dioxide, i.e., solutions of sodium chloride, potassium chloride, and crude oil. According to the results, with increasing pressure, despite a slight decrease in the equilibrium interfacial tension of crude oil/carbonated brine, little change was observed in the DIFT process. In carbonated solutions, the equilibrium interfacial tension (EIFT) decreases with increasing temperature due to increased molecular motion (increasing entropy). However, in general, it was observed that the presence of CO2 in the aqueous phase increased the EIFT compared to pure brine, which can be attributed to the acidic structure of crude oil and lowering the pH of the aqueous phase as well as reducing the ionization of natural surfactants.

Keywords

Main Subjects


[1] Lam V., Li G., Song C., Chen J., Fairbridge C., Hui R., Zhang J., A Review of Electrochemical Desulfurization Technologies for Fossil Fuels, Fuel processing technology, 98: 30-38 (2012).
[3] Mohr S., Wang J., Ellem G., Ward J., Giurco D., Projection of World Fossil Fuels by Country, Fuel, 141: 120-135 (2015).
[4]  علی شیری ه.، محمد خانلی ش.، محمدباقری ا.، مطالعه عوامل موثر بر انتشار دی‏ اکسیدکربن در کشور (با رویکرد تحلیل تجزیه لاسپیرز اصلاح شده)، فصلنامه علوم و تکنولوژی محیط زیست، (2)19: 62-51  (1396).
[6] Mosavat N., Abedini A., Torabi F., Phase Behaviour of CO2–Brine and CO2–Oil Systems for CO2 Storage and Enhanced Oil Recovery: Experimental Studies, Energy Procedia, 63: 5631-5645 (2014).
[8] Lashkarbolooki M., Riazi M., Ayatollahi S., Effect of CO2 and Natural Surfactant of Crude Oil on the Dynamic Interfacial Tensions During Carbonated Water Flooding: Experimental and Modeling Investigation, Journal of Petroleum Science and Engineering, 159: 58-67 (2017).
[10] Riazi M., "Pore Scale Mechanisms of Carbonated Water Injection in Oil Reservoirs", PhD Thesis, Heriot-Watt University, (2011).
[11] De Nevers N., Carbonated Waterflooding, World Oil;(United States), 163(4): (1966).
[12] Honarvar B., Azdarpour A., Karimi M., Rahimi A., Afkhami Karaei M., Hamidi H., Ing J., Mohammadian E., Experimental Investigation of Interfacial Tension Measurement and Oil Recovery by Carbonated Water Injection: A Case Study Using Core Samples from an Iranian Carbonate Oil Reservoir, Energy & Fuels, 31(3): 2740-2748 (2017).
[13]  شکری افرا م.ج.، رستمی ب.، بهاءلو هوره م.، نوروزی ح.، بررسی آزمایشگاهی اثر درجه سنگینی نفت در تزریق آب کربناته و مقایسه آن در تزریق ثانویه و ثالثیه، پژوهش نفت، (3)96: 20-31  (1396).
[14] Lashkarbolooki M., Hezave A.Z., Ayatollahi S., Swelling Behavior of Heavy Crude Oil During Injection of Carbonated Brine Containing Chloride Anion, Journal of Molecular Liquids, 276: 7-14 (2019).
[15] Zuo L., Krevor S., Falta R.W., Benson S.M., An Experimental Study of CO2 Exsolution and Relative Permeability Measurements During CO2 Saturated Water Depressurization, Transport in porous media, 91(2): 459-478 (2012).
[16] Zuo L., Benson S.M., Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration, Energy Procedia, 37: 6957-6963 (2013).
[17] Zuo L., Zhang C., Falta R.W., Benson S.M., Micromodel Investigations of CO2 Exsolution from Carbonated Water in Sedimentary Rocks, Advances in water resources, 53: 188-197 (2013).
[18] Riazi M., Sohrabi M., Bernstone C., Jamiolahmady M., Ireland S., Visualisation of Mechanisms Involved in CO2 Injection and Storage in Hydrocarbon Reservoirsand Water-Bearing Aquifers, Chemical Engineering Research and Design, 89(9): 1827-1840 (2011).
[19] Chalbaud C., Robin M., Lombard J., Martin F., Egermann P., Bertin H., Interfacial Tension Measurements and Wettability Evaluation for Geological CO2 Storage, Advances in water resources, 32(1): 98-109 (2009).
[20] Sutjiadi-Sia Y., Jaeger P., Eggers R., Interfacial Phenomena of Aqueous Systems in Dense Carbon Dioxide, The Journal of Supercritical Fluids, 46(3): 272-279 (2008).
[21] محبوبی فولادی م.، رستمی ب.، پورافشاری پ.، مطالعه آزمایشگاهی اثر شوری آب و ترشوندگی اولیه بر میزان برداشت نفت، پژوهش نفت، (3)95: 25-16 (1395).
[22] Lashkarbolooki M., Ayatollahi S., Riazi M., The Impacts of Aqueous Ions on Interfacial Tension and Wettability of an Asphaltenic–Acidic Crude Oil Reservoir During Smart Water Injection, Journal of Chemical & Engineering Data, 59(11): 3624-3634 (2014).
[23] Lashkarbolooki M., Eftekhari M.J., Najimi S., Ayatollahi S., Minimum Miscibility Pressure of CO2 and Crude Oil During CO2 Injection in the Reservoir, The Journal of Supercritical Fluids, 127: 121-128 (2017).
[24] Xu J., Zhang Y., Chen H., Wang P., Xie Z., Yao Y., Yan Y., Zhang J., Effect of Surfactant Headgroups on the Oil/Water Interface: An Interfacial Tension Measurement and Simulation Study, Journal of Molecular Structure, 1052: 50-56 (2013).
[25] Bera A., Mandal A., Guha B., Synergistic Effect of Surfactant and Salt Mixture on Interfacial Tension Reduction between Crude Oil and Water in Enhanced Oil Recovery, Journal of Chemical & Engineering Data, 59(1): 89-96 (2013).
[26] Georgiadis A., Maitland G., Trusler J.M., Bismarck A., Interfacial Tension Measurements of the (H2O+ N-Decane+ CO2) Ternary System at Elevated Pressures and Temperatures, Journal of Chemical & Engineering Data, 56(12): 4900-4908 (2011).
[27] Escrochi M., Mehranbod N., Ayatollahi S., The Gas–Oil Interfacial Behavior During Gas Injection into an Asphaltenic Oil Reservoir, Journal of Chemical & Engineering Data, 58(9): 2513-2526 (2013).
[28] Zolghadr A., Escrochi M., Ayatollahi S., Temperature and Composition Effect on CO2 Miscibility by Interfacial Tension Measurement, Journal of Chemical & Engineering Data, 58(5): 1168-1175 (2013).
[29] Rajagopalan R., Hiemenz P.C., Principles of Colloid and Surface Chemistry, Marcel Dekker, New-York, 8247: 8 (1997).
[30] Jafarbeigi E., Kamari E., Salimi F., Mohammadidoust A., Experimental Study of the Effects of a Novel Nanoparticle on Enhanced Oil Recovery in Carbonate Porous Media, Journal of Petroleum science and Engineering, 195: 107602 (2020).
[31] Lashkarbolooki M., Ayatollahi S., Investigation of Ionic Liquids Based on Pyridinium and Imidazolium as Interfacial Tension Reducer of Crude Oil− Water and Their Synergism with MgCl2, Journal of Petroleum science and Engineering, 171: 414-421 (2018).
[32] Iglauer S., Wu Y., Shuler P., Tang Y., Goddard III W.A., Alkyl Polyglycoside Surfactant–Alcohol Cosolvent Formulations for Improved Oil Recovery, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339(1-3): 48-59 (2009).
[33] Wu Y., Iglauer S., Shuler P., Tang Y., Goddard W., Branched Alkyl Alcohol Propoxylated Sulfate Surfactants for Improved Oil Recovery, Tenside Surfactants Detergents, 47: 152-161 (2010).
[34] Zulkifli N.N., Mahmood S.M., Akbari S., Manap A.A.A., Kechut N.I., Elrais K.A., Evaluation of New Surfactants for Enhanced Oil Recovery Applications in High-Temperature Reservoirs, Journal of Petroleum Exploration and Production Technology, 10: 283-296 (2019).
[35] Li Q., Kang C., Wang H., Liu C., Zhang C., Application of Microbial Enhanced Oil Recovery Technique to Daqing Oilfield, Biochemical Engineering Journal, 11(2-3): 197-199 (2002).
[36] Sarafzadeh P., Niazi A., Oboodi V., Ravanbakhsh M., Hezave A.Z., Ayatollahi S.S., Raeissi S., Investigating the Efficiency of Meor Processes Using Enterobacter Cloacae and Bacillus Stearothermophilus Sucpm# 14 (Biosurfactant-Producing Strains) in Carbonated Reservoirs, Journal of Petroleum science and Engineering, 113: 46-53 (2014).
[37] Mandal A., Kar S., Kumar S., The Synergistic Effect of a Mixed Surfactant (Tween 80 and Sdbs) on Wettability Alteration of the Oil Wet Quartz Surface, Journal of Dispersion Science and Technology, 37(9): 1268-1276 (2016).
[38] Kumar B., "Effect of Salinity on the Interfacial Tension of Model and Crude Oil Systems", PhD Thesis, Graduate Studies, (2012).
[40] Lashkarbolooki M., Ayatollahi S., Riazi M., Mechanistic Study on the Dynamic Interfacial Tension of Crude Oil+ Water Systems: Experimental and Modeling Approaches, Journal of industrial and engineering chemistry, 35: 408-416 (2016).
[41] Lashkarbolooki M., Riazi M., Ayatollahi S., Hezave A.Z., Synergy Effects of Ions, Resin, and Asphaltene on Interfacial Tension of Acidic Crude Oil and Low–High Salinity Brines, Fuel, 165: 75-85 (2016).
[42] Lashkarbolooki M., Ayatollahi S., Riazi M., Effect of Salinity, Resin, and Asphaltene on the Surface Properties of Acidic Crude Oil/Smart Water/Rock System, Energy & Fuels, 28(11): 6820-6829 (2014).
[43] Lashkarbolooki M., Ayatollahi S., Effect of Asphaltene and Resin on Interfacial Tension of Acidic Crude Oil/Sulfate Aqueous Solution: Experimental Study, Fluid Phase Equilibria, 414: 149-155 (2016).
[44] Dong Y., Dindoruk B., Ishizawa C., Lewis E.J., An Experimental Investigation of Carbonated Water Flooding, Society of Petroleum Engineers, Annual Technical Conference and Exhibition (2011).
[45] Yang D., Tontiwachwuthikul P., Gu Y., Interfacial Tensions of the Crude Oil+ Reservoir Brine+ CO2 Systems at Pressures up to 31 Mpa and Temperatures of 27 C and 58 C, Journal of Chemical & Engineering Data, 50(4): 1242-1249 (2005).
[47] Sohrabi M., Kechut N.I., Riazi M., Jamiolahmady M., Ireland S., Robertson G., Coreflooding Studies to Investigate the Potential of Carbonated Water Injection as an Injection Strategy for Improved Oil Recovery and CO2 Storage, Transport in porous media, 91(1): 101-121 (2012).
[48] Sohrabi M., Riazi M., Jamiolahmady M., Kechut N.I., Ireland S., Robertson G., Carbonated Water Injection (CWI)–a Productive Way of Using CO2 for Oil Recovery and CO2 Storage, Energy Procedia, 4: 2192-2199 (2011).
[49] Riazi M., Sohrabi M., Jamiolahmady M., Experimental Study of Pore-Scale Mechanisms of Carbonated Water Injection, Transport in porous media, 86(1): 73-86 (2011).
[50] Lashkarbolooki M., Riazi M., Ayatollahi S,. Effect of CO2 and Natural Surfactant of Crude Oil on the Dynamic Interfacial Tensions During Carbonated Water Flooding: Experimental and Modeling Investigation, Journal of Petroleum Science and Engineering, 159: 58-67 (2017).
[51] Jadhunandan P., Morrow N.R., Effect of Wettability on Waterflood Recovery for Crude-Oil/Brine/Rock Systems, SPE reservoir engineering, 10(01): 40-46 (1995).
[52] Buckley J.S., "Mechanisms and Consequences of Wettability Alteration by Crude Oils", PhD Thesis, Heriot-Watt University, (1996).
[53] Nasralla R.A., Bataweel M.A., Nasr-El-Din H.A., Investigation of Wettability Alteration by Low Salinity Water, Society of Petroleum Engineers, (2011).
[54] Sulak R., Ekofisk Field: The First 20 Years, Journal of Petroleum Technology, 43(10): 1265-1271 (1991).
[55] Yousef A.A., Al-Saleh S.H., Al-Kaabi A., Al-Jawfi M.S., Laboratory Investigation of the Impact of Injection-Water Salinity and Ionic Content on Oil Recovery from Carbonate Reservoirs, SPE Reservoir Evaluation & Engineering, 14(05): 578-593 (2011).
[56] Hognesen E.J., Strand S., Austad T., Waterflooding of Preferential Oil-Wet Carbonates: Oil Recovery Related to Reservoir Temperature and Brine Composition, Society of Petroleum Engineers, (2005).
[58] Buckley J.S., Bousseau C., Liu Y., Wetting Alteration by Brine and Crude Oil: From Contact Angles to Cores, Spe Journal, 1(03): 341-350 (1996).
[59] Anderson W.G., Wettability Literature Survey-Part 4: Effects of Wettability on Capillary Pressure, Journal of petroleum technology, 39(10): 1283-1300 (1987).
[60] Kumar A., Neale G., Hornof V., Effects of Connate Water Composition on Interfacial Tension Behaviour of Surfactant Solutions, Journal of Canadian Petroleum Technology, 23(01): (1984).
[61] Lashkarbolooki M., Hezave A.Z., Ayatollahi S., The Role of CO2 and Ion Type in the Dynamic Interfacial Tension of Acidic Crude Oil/Carbonated Brine, Petroleum Science, 16(4): 850-858 (2019).
[63] Jeribi M., Almir-Assad B., Langevin D., Henaut I., Argillier J.F., Adsorption Kinetics of Asphaltenes at Liquid Interfaces, Journal of colloid and interface science, 256(2): 268-272 (2002).
[64] Lashkarbolooki M., Riazi M., Ayatollahi S., Design. Investigation of Effects of Salinity, Temperature, Pressure, and Crude Oil Type on the Dynamic Interfacial Tensions, Chemical Engineering Research and Design 115: 53-65 (2016).
[65] Lashkarbolooki M., Riazi M., Ayatollahi S., Effect of CO2 and Crude Oil Type on the Dynamic Interfacial Tension of Crude Oil/Carbonated Water at Different Operational Conditions, Journal of Petroleum Science and Engineering, 170: 576-581 (2018).
[66] Laughlin R.G., The Aqueous Phase Behavior of Surfactants, Journal of the American Chemical Society, 117(42): 10603 (1994).
[68] Hua X.Y., Rosen M.J., Dynamic Surface Tension of Aqueous Surfactant Solutions: I. Basic Paremeters, Journal of Colloid and Interface Science, 124(2): 652-659 (1988).
[69] Lashkarbolooki M., Ayatollahi S., Experimental and Modeling Investigation of Dynamic Interfacial Tension of Asphaltenic–Acidic Crude Oil/Aqueous Phase Containing Different Ions, Chinese journal of chemical engineering, 25(12): 1820-1830 (2017).
[70] Crawford H., Neill G., Bucy B., Crawford P.B., Carbon Dioxide-a Multipurpose Additive for Effective Well Stimulation, Journal of Petroleum Technology, 15(03): 237-242 (1963).
[73] Buckley J., Takamura K., Morrow N.R., Influence of Electrical Surface Charges on the Wetting Properties of Crude Oils, SPE reservoir engineering, 4(03): 332-340 (1989).
[74] Cratin P.D., Mathematical Modeling of Some Ph-Dependent Surface and Interfacial Properties of Stearic Acid, Journal of dispersion science and technology, 14(5): 559-602 (1993).
[75] Danielli J.F., The Relations between Surface P H, Ion Concentrations and Interfacial Tension, Proceedings of the Royal Society of London. Series B-Biological Sciences, 122(827): 155-174 (1937).
[76] Hartridge H., Peters R.A., Interfacial Tension and Hydrogen-Ion Concentration, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 101(711): 348-367 (1922).
[77] Peters R.A., Interfacial Tension and Hydrogen-Ion Concentration, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 133(821): 140-154 (1931).
[79] Duan Z., Sun R., Zhu C., Chou I.-M., An Improved Model for the Calculation of Co2 Solubility in Aqueous Solutions Containing Na+, K+, Ca2+, Mg2+, Cl, and SO42−, Marine Chemistry, 98(2-4): 131-139 (2006).
[82] Sayegh S., Krause F., Girard M., DeBree C., Rock/Fluid Interactions of Carbonated Brines in a Sandstone Reservoir: Pembina Cardium, Alberta, Canada, SPE formation evaluation, 5(04): 399-405 (1990).
[83] Lashkarbolooki M., Ayatollahi S., Effects of Asphaltene, Resin and Crude Oil Type on the Interfacial Tension of Crude Oil/Brine Solution, Fuel, 223: 261-267 (2018).
[84] Lashkarbolooki M., Hezave A.Z., Ayatollahi S., The Role of CO2 and Ion Type in the Dynamic Interfacial Tension of Acidic Crude Oil/Carbonated Brine, Petroleum Science, 16: 850-858 (2019).