Assessment of the Effect of Modification of ZIF-8 Nanoparticles by the CTAB Cationic Surfactant on the Performance of ZIF-8/PVA Mixed Matrix Membranes in Pervaporation Dehydration of Isopropanol

Document Type : Research Article


1 Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, I.R.IRAN

2 Petrochemical Research Institute, Polymer and Petrochemical Research Institute, Tehran, I.R.IRAN


Dehydration of organic compounds to achieve highly pure and valuable products constitutes one of the most important chapters in the chemical industry. In the present study, mixed matrix membranes (MMMs) including poly(vinyl alcohol) and modified ZIF-8 mineral phase by cationic surfactant of CTAB, were evaluated in terms of their performance in dehydration of isopropanol in the pervaporation process. The prepared nanocrystals and membranes were characterized by Fourier-transform infrared spectroscopy, gas adsorption-desorption, Thermal gravimetric analysis, X-ray crystallography, and Field emission scanning electron microscopy. Microscopic images showed that the presence of CTAB changed the morphology of ZIF-8 nanoparticles from rhombic dodecahedral to truncated rhombic dodecahedral. The effect of unmodified ZIF-8 loading from 1 to 10 wt.% in membranes on the separation performance of isopropanol feed containing 10 wt.% water at 30 °C was investigated. Then, based on the optimal loading, the separation performance of MMM containing 5 wt.% of surfactant-modified nanoparticles was evaluated which proved success in achieving better performance in comparison with pure polymer membranes and MMM containing unmodified nanoparticles by presenting the permeation flux of 0.942 kg/m2h and separation factor of 174.


Main Subjects

[1] Das P., Ray S.K., Kuila S.B., Samanta H.S., Singha N.R., Systematic Choice of Crosslinker and Filler for Pervaporation Membrane: a Case Study with Dehydration of Isopropyl Alcohol–Water Mixtures by Polyvinyl Alcohol MembranesSeparation and Purification Technology81(2): 159-173 (2011).
[2] Thorat G.B., Gupta S., Murthy Z.V.P., Synthesis, Characterization and Application of PVA/Ionic Liquid Mixed Matrix Membranes for Pervaporation Dehydration of IsopropanolChinese Journal of Chemical Engineering25(10): 1402-1411 (2017).
[3] Zhang Y., Du P., Shi R., Hong Z., Zhu X., Gao B., Gu X., Blocking Defects of Zeolite Membranes with WS2 Nanosheets for Vapor Permeation Dehydration of Low Water Content IsopropanolJournal of Membrane Science, 597: 117625 (2020).
[4] Hua D., Ong Y.K., Wang Y., Yang T., Chung T.S., ZIF-90/P84 Mixed Matrix Membranes for Pervaporation Dehydration of IsopropanolJournal of Membrane Science, 453: 155-167 (2014).
[5] Smitha B., Suhanya D., Sridhar S., Ramakrishna M., Separation of Organic–Organic Mixtures by Pervaporation—A ReviewJournal of Membrane Science241(1): 1-21 (2004).
[6] Shao P., Huang R.Y.M., Polymeric Membrane PervaporationJournal of Membrane Science287(2): 162-179 (2007).
[7] Tamaddondar M., Pahlavanzadeh H., Hosseini S.S., Ruan G., Tan N.R., Self-Assembled Polyelectrolyte Surfactant Nanocomposite Membranes for Pervaporation Separation of MeOH/MTBEJournal of Membrane Science, 472: 91-101 (2014).
[8] Ong Y.K., Shi G.M., Le N.L., Tang Y.P., Zuo J., Nunes S.P., Chung T.S., Recent Membrane Development for Pervaporation Processes, Progress in Polymer Science, 57: 1-31 (2016).
[9] رجبی ل.، بختیاری ا.، جعفری ز.، ساخت غشای آمیزه آگارز/پلی‌وینیل الکل برای جداسازی تراوش تبخیری آب/اتانول، نشریه شیمی و مهندسی شیمی ایران، (4)38: 224-217 (1398).
[10] Hosseini S.S., Mehralian E., Ekbatan M.H., Li P., Polystyrene Derivative-Blended Nanocomposite Membranes for Pervaporation Dehydration of HydrazineKorean Journal of Chemical Engineering38(3): 587-603 (2021).
[11] Hosseini S.S., Pahlavanzadeh H., Tamadondar M., Dehydration of Organic Compounds using Poly Vinyl Alcohol Membranes in Pervaporation Process, Iranian Journal of Chemical Engineering, 13: 76-84 (2014).
[12] Durmaz-Hilmioglu N., Yildirim A.E., Sakaoglu A.S., Tulbentci S., Acetic Acid Dehydration by Pervaporation, Chemical Engineering and Processing: Process Intensification40(3): 263-267 (2001).
[14] Jia Z., Wu G., Metal-Organic Frameworks Based Mixed Matrix Membranes for Pervaporation, Microporous and Mesoporous Materials, 235: 151-159 (2016).
[15] Wu G., Jiang M., Zhang T., Jia Z., Tunable Pervaporation Performance of Modified MIL-53 (Al)-NH2/Poly (Vinyl Alcohol) Mixed Matrix MembranesJournal of Membrane Science, 507: 72-80 (2016).
[16] Fazlifard S., Mohammadi T., Bakhtiari O., Chitosan/ZIF‐8 Mixed‐Matrix Membranes for Pervaporation Dehydration of Isopropanol, Chemical Engineering & Technology, 40(4): 648-655 (2017).
[17] Gao Z., Yue Y., Li W., Application of Zeolite-Filled Pervaporation Membrane, Zeolites, 16(1): 70-74 (1996).
[18] Flynn E.J., Keane D.A., Tabari P.M., Morris M.A.., Pervaporation Performance Enhancement Through the Incorporation of Mesoporous Silica Spheres into PVA Membranes, Separation and Purification Technology, 118: 73-80 (2013).
 [19] Sun L.B., Li J.R., Park J., Zhou H.C., Cooperative Template-Directed Assembly of Mesoporous Metal–Organic Frameworks, Journal of the American Chemical Society, 134(1): 126-129 (2012).
[20] Zhang W., Liu Y., Lu G., Wang Y., Li S., Cui C., Huo F., Mesoporous Metal–Organic Frameworks with Size‐, Shape‐, and Space‐Distribution‐Controlled Pore Structure. Advanced Materials27(18): 2923-2929 (2015).
[22] Xing T., Lou Y., Bao Q., Chen J., Surfactant-Assisted Synthesis of ZIF-8 Nanocrystals in Aqueous Solution via Microwave IrradiationCryst. Eng. Comm16(38): 8994-9000 (2014).
[23] Zhang K., Lively R.P., Zhang C., Koros W.J., Chance R.R., Investigating the Intrinsic Ethanol/Water Separation Capability of ZIF-8: an Adsorption and Diffusion Study, The Journal of Physical Chemistry C117(14): 7214-7225 (2013).
[24] Yang F., Mu H., Wang C., Xiang L., Yao K.X., Liu L., Yang Y., Han Y., Li Y., Pan Y., Morphological Map of ZIF-8 Crystals with Five Distinctive Shapes: Feature of Filler in Mixed-Matrix Membranes on C3H6/C3H8 SeparationChemistry of Materials30(10): 3467-3473 (2018).
[25] Ordonez M.J.C., Balkus J.K.J., Ferraris J.P., Musselman I.H., Molecular Sieving Realized with ZIF-8/Matrimid® Mixed-Matrix MembranesJournal of Membrane Science361(1-2): 28-37 (2010).
[26] Yang T., Chung T.-S., High Performance ZIF-8/PBI Nano-Composite Membranes for High Temperature Hydrogen Separation Consisting of Carbon Monoxide and Water Vapor, International Journal of Hydrogen Energy, 38(1): 229-239 (2013).
[27] Hwang S., Chi W.S., Lee S.J., Im S.H., Kim J.H., Kim J., Hollow ZIF-8 Nanoparticles Improve the Permeability of Mixed Matrix Membranes for CO2/CH4 Gas SeparationJournal of Membrane Science, 480: 11-19 (2015).
[28] Amedi H.R., Aghajani M., Aminosilane-Functionalized ZIF-8/PEBA Mixed Matrix Membrane for Gas Separation Application, Microporous and Mesoporous Materials, 247: 124-135 (2017).
[29] Soleimany A., Karimi-Sabet J., Hosseini S.S., Experimental and Modeling Investigations Towards Tailoring Cellulose Triacetate Membranes for High Performance Helium SeparationChemical Engineering Research and Design137: 194-212 (2018).
[30] Barooah M., Mandal B.., Synthesis, Characterization and CO2 Separation Performance of Novel PVA/PG/ZIF-8 Mixed Matrix Membrane, Journal of Membrane Science, 572: 198-209 (2019).
[31] Zhu, T, Xu S., Yu F., Yu X., Wang Y., ZIF-8@ GO Composites Incorporated Polydimethylsiloxane Membrane with Prominent Separation Performance for Ethanol RecoveryJournal of Membrane Science, 598: 117681 (2020).
[32] Shi G.M., Yang T., Chung T.S.., Polybenzimidazole (PBI)/Zeolitic Imidazolate Frameworks (ZIF-8) Mixed Matrix Membranes for Pervaporation Dehydration of Alcohols, Journal of Membrane Science, 415: 577-586 (2012).
[35] Ghosh S., Ray A., Pramanik N., Self-Assembly of Surfactants: An Overview on General Aspects of Amphiphiles, Biophysical Chemistry, 265: 106429 (2020).
[36] Avci C., Imaz I., Carné-Sánchez A., Pariente J.A., Tasios N., Pérez-Carvajal J., Alonso M.I., Blanco A., Dijkstra M., López C., Maspoch D.,  Self-Assembly of Polyhedral Metal–Organic Framework Particles into Three-Dimensional Ordered Superstructures, Nature Chemistry, 10(1): 78-84 (2018).
[37] Troyano J., Carné-Sánchez A., Avci C., Imaz I., Maspoch D., Colloidal Metal–Organic Framework Particles: The Pioneering Case of ZIF-8Chemical Society Reviews48(23): 5534-5546 (2019).
[38] Pan Y., Heryadi D., Zhou F., Zhao L., Lestari G., Su H., Lai Z., Tuning the Crystal Morphology and Size of Zeolitic Imidazolate Framework-8 in Aqueous Solution by SurfactantsCryst. Eng. Comm.13(23): 6937-6940 (2011).
[39] Fan X., Wang W., Li W., Zhou J., Wang B., Zheng J., Li X., Highly Porous ZIF-8 Nanocrystals Prepared by a Surfactant Mediated Method in Aqueous Solution with Enhanced Adsorption Kkinetics, ACS Applied Materials & Interfaces6(17): 14994-14999 (2014).
[40] Zanon A., Verpoort F., Metals@ZIFs: Catalytic Applications and Size Selective CatalysisCoordination Chemistry Reviews353: 201-222 (2017).
[41] Zheng G., Chen Z., Sentosun K., Pérez-Juste I., Bals S., Liz-Marzán L.M., Pastoriza-Santos I., Pérez-Juste J., Hong M., Shape Control in ZIF-8 Nanocrystals and Metal Nanoparticles@ ZIF-8 Heterostructures, Nanoscale, 9(43): 16645-16651 (2017).
[42] Asadi E., Ghadimi A., Hosseini S.S., Sadatnia B., Rostamizadeh M., Nadeali A., Surfactant-Mediated and Wet-Impregnation Approaches for Modification of ZIF-8 Nanocrystals: Mixed Matrix Membranes for CO2/CH4 SeparationMicroporous and Mesoporous Materials, 329: 111539 (2021).
[43] Cravillon J., Münzer S., Lohmeier S. J., Feldhoff A., Huber K., Wiebcke M., Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework, Chemistry of Materials21(8): 1410-1412 (2009).
[44] Wu C.S., Xiong Z.H., Li C., Zhang J.M., Zeolitic Imidazolate Metal Organic Framework ZIF-8 with Ultra-High Adsorption Capacity Bound Tetracycline in Aqueous SolutionRSC Advances5(100): 82127-82137 (2015).
[45] Thi Thanh M., Vinh Thien T., Thi Thanh Chau V., Dinh Du P., Phi Hung N., Quang Khieu D., Synthesis of Iron Doped Zeolite Imidazolate Framework-8 and its Remazol Deep Black RGB Dye Adsorption Ability, Journal of Chemistry, 2017: 5045973 (2017).
[46] Shahrak M.N., Ghahramaninezhad M., Eydifarash M., Zeolitic Imidazolate Framework-8 for Efficient Adsorption and Removal of Cr (VI) Ions from Aqueous Solution, Environmental Science and Pollution Research, 24(10): 9624-9634 (2017).
[48] Hu Y., Kazemian H., Rohani S., Huang Y., Song Y., In Situ High Pressure Study of ZIF-8 by FT-IR SpectroscopyChemical Communications47(47): 12694-12696 (2011).
[49] Bustamante E.L., Fernández J.L., Zamaro J.M., Influence of the Solvent in the Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals at Room Temperature, Journal of Colloid and Interface Science, 424: 37-43 (2014).
[50] Japip S., Erifin S., Chung T.-S., Reduced Thermal Rearrangement Temperature via Formation of Zeolitic Imidazolate Framework (ZIF)-8-based Nanocomposites for Hydrogen Purification, Separation and Purification Technology, 212: 965-973 (2019).
[51] Zhang H., Shi X., Li J., Kumar P., Liu B., Selective Dye Adsorption by Zeolitic Imidazolate Framework-8 Loaded UiO-66-NH2Nanomaterials9(9): 1283 (2019).
[52] Jiang M., Cao X., Zhu D., Duan Y., Zhang J., Hierarchically Porous N-doped Carbon Derived from ZIF-8 Nanocomposites for Electrochemical Applications, Electrochimica Acta196: 699-707 (2016).
[53] Glover T.G., Mu B., “Gas Adsorption in Metal-organic Frameworks: Fundamentals and Applications”, CRC Press, (2018).
[54] Wu Y.N., Zhou M., Zhang B., Wu B., Li J., Qiao J., Guan X., Li F., Amino Acid Assisted Templating Synthesis of Hierarchical Zeolitic Imidazolate Framework-8 for Efficient Arsenate Removal, Nanoscale6(2): 1105-1112 (2014).
[55] Linder-Patton O.M., de Prinse T.J., Furukawa S., Bell S.G., Sumida K., Doonan C.J., Sumby C.J., Influence of Nanoscale Structuralisation on the Catalytic Performance of ZIF-8: a Cautionary Surface Catalysis StudyCrystEngComm20(34): 4926-4934 (2018).
[56] Sann E.E., Pan Y., Gao Z., Zhan S., Xia F., Highly Hydrophobic ZIF-8 Particles and Application for Oil-Water SeparationSeparation and Purification Technology206: 186-191 (2018).
[57] Hsu P.Y., Hu T.Y., Kumar S.R., Chang C.H., Wu K.C.W., Tung K.L., Lue S.J., Highly Zeolite-loaded Polyvinyl Alcohol Composite Membranes for Alkaline Fuel-Cell ElectrolytesPolymers10(1): 102 (2018).
 [58] Kwon Y., Chaudhari S., Kim C., Son D., Park J., Moon M., Shon M., Park Y., Nam S., Ag-Exchanged NaY Zeolite Introduced Polyvinyl Alcohol/Polyacrylic Acid Mixed Matrix Membrane for Pervaporation Separation of Water/Isopropanol Mixture, RSC Advances, 8: 20669-20678 (2018).
[59] Gupta S., Thorat G.B., Murthy Z.V.P., Mixed Matrix PVA-GO-TiO2 Membranes for the Dehydration of Isopropyl Alcohol by Pervaporation, Macromolecular Research, 28: 587-595 (2020).
[60] Castro-Muñoz R., Buera-González J., de la Iglesia O., Galiano F., Fíla V., Malankowska M., Rubio C., Figoli A., Téllez C., Coronas J., Towards the Dehydration of Ethanol Using Pervaporation Cross-Linked Poly (Vinyl Alcohol)/Graphene Oxide Membranes, Journal of Membrane Science, 582: 423-434 (2019).
[61] Semsarzadeh M.A., Ghalei B., Preparation, Characterization and Gas Permeation Properties of Polyurethane–Silica/Polyvinyl Alcohol Mixed Matrix Membranes, Journal of membrane science, 432: 115-125 (2013).
[62] Negm N.A., Mohamed A.S., Ahmed S.M., Abd El-Raouf M., Polymer-Cationic Surfactant Interaction: 1. Surface and Physicochemical Properties of Polyvinyl Alcohol (PVA)-S-Alkyl Isothiouronium Bromide Surfactant Mixed Systems, Journal of Surfactants and Detergents18(2): 245-250 (2015).