Performance Evaluation of a Number of Zeolite Adsorbents to Separate Hydrogen and Deuterium Gases in Binary Mixtures Using Grand Canonical Monte-Carlo Simulation

Document Type : Research Article

Authors

1 Department of Chemistry, Faculty of Science, University of Neyshabur, Neyshabur, I.R.IRAN

2 Nuclear Fuel Cycle Research School, NSTRI, AEOI, Tehran, I.R.IRAN

Abstract

Separation based on the adsorption of hydrogen and deuterium molecules in the binary mixtures were carried out by fifteen different zeolites at 77K and the ambient pressure using the classical Grand-Canonical Mont-Carlo simulation method. To simulate hydrogen and deuterium gases, their three-sites models were used to consider the effect of 77K as cryo-temperature. The separation factor was calculated based on the amount of adsorption of hydrogen and deuterium gases, the probability of energy distribution in the nano-cavities of zeolites and intermolecular, electrostatic, and van der Waals energies and the total energy of all systems were calculated. The results have shown that some zeolites, such as VSV, ZON, ACO and EUO, have a better ability to separate hydrogen and deuterium molecules with separation values between 1.28 and 1.46. Also, the temperature factor as a thermodynamic parameter as well as the chemistry of the nanometer cavities of zeolites and the shape variety of cavities in a zeolite can be effective on the adsorption of gases and therefore in their separation.

Keywords

Main Subjects


[1] Bosch H.-S., Hale G.M., Improved Formulas for Fusion Cross-Sections and Thermal Reactivities, Nuclear Fusion, 32: 611-631 (1992). https://doi.org/10.1088/0029-5515/32/4/I07
[2] Jones S.E., Muon-Catalysed Fusion Revisited, Nature, 321: 127-133 (1986). https://doi.org/10.1038/321127a0
[3] Kushner D.J., Baker A., Dunstall T.G., Pharmacological uses and Perspectives of Heavy Water and Deuterated Compounds, Canadian Journal of Physiology and Pharmacology, 77: 79-88 (1999). https://doi.org/10.1139/y99-005
[4] Vértes A., Nagy S., Klencsár Z., Lovas R.G., “Handbook of Nuclear Chemistry: Elements and Isotopes: Formation, Transformation, Distribution”, Kluwer Academic Publishers (2003). 
[5] Lozada-Hidalgo M., Zhang S., Hu S., Esfandiar A., Grigorieva I.V., Geim A.K., Scalable and Efficient Separation of Hydrogen Isotopes using Graphene-based Electrochemical Pumping, Nature Communications, 8: 15215/1-15251/5 (2017).doi:10.1038/ncomms15215 (2017).
[6] Aoki K., Ogata Y., Kusakabe K., Morooka S., Applicability of Palladium Membrane for the Separation of Protium and Deuterium, International Journal of Hydrogen Energy, 23: 325-332 (1998). https://doi.org/10.1016/S0360-3199(97)00071-2
[7] Tanaka S., Kiyose R., Isotope Separation of Hydrogen and Deuterium by Permeation through Palladium Membrane, Journal of Nuclear Science and Technology, 16: 923-925 (1979). https://doi.org/10.1080/18811248.1979.9730997
[9] Physick A.J.W., Wales D.J., Owens S.H.R., Shang J., Webley p.A., Mays T. J., Ting V. P., Novel Low Energy Hydrogen–Deuterium Isotope Breakthrough Separation using a Trapdoor Zeolite, Chemical Engineering Journal, 288: 161-168 (2016). https://doi.org/10.1016/j.cej.2015.11.040
[10] Friebe S., Wang N., Diestel L., Liu Y., Schulz A., Mundstock A., Caro J., Deuterium/hydrogen Permeation through Different Molecular Sieve Membranes: ZIF, LDH, Zeolite, Microporous and Mesoporous Materials, 216: 127-132 (2015). https://doi.org/10.1016/j.micromeso.2015.03.034
[11] Shi J., Li J., Wu E., Adsorption of Hydrogen and Deuterium in MnO2 Modified NaX Zeolites, Microporous and Mesoporous Materials, 152: 219-223 (2012). https://doi.org/10.1016/j.micromeso.2011.11.029
[12] Xiong R., Xicohtencatl R.B., Zhang L., Li P., Yao Y., Sang G., Chen C., Tao T., Luo D., Hirscher M.,  Thermodynamics, Kinetics and Selectivity of H2 and D2 on Zeolite 5A below 77K, Microporous and Mesoporous Materials, 264: 22-27 (2018). https://doi.org/10.1016/J.MICROMESO.2017.12.035
[13] Chu X.-Z., Cheng Z. –P., Xiang X.-X., Xu J.-M., Zhao Y.-J., Zhang W.-G., Shun J., Separation Dynamics of Hydrogen Isotope Gas in Mesoporous and Microporous Adsorbent Beds at 77 K: SBA-15 and Zeolites 5A, Y, 10X, International Journal of Hydrogen Energy, 39: 4437-4446 (2014). http://dx.doi.org/10.1016/j.ijhydene.2014.01.031
[14] Kotoh K., Kimura K., Nakamura Y., Kudo K., Hydrogen Isotope Separation using Molecular Sieve of Synthetic Zeolite 3A, Fusion Science and Technology, 54: 419-422 (2008). https://doi.org/10.13182/FST08-A1844
[15] Giraudet M., Bezverkhyy I., Weber G., Dirand C., Macaud M., Bellat J.-P., D2/H2 Adsorption Selectivity on FAU Zeolites at 77.4 K: Influence of Si/Al Ratio and Cationic Composition, Microporous and Mesoporous Materials, 270: 211-219 (2018). http://dx.doi.org/10.1016/j.micromeso.2018.05.026
[16] Perez-Carbajo J., Parra J.B., Ania C.O., Merkling P.J., Calero S., Molecular Sieves for the Separation of Hydrogen Isotopes, ACS Applied Materials & Interfaces, 11: 18833-18840 (2019). https://doi.org/10.1021/acsami.9b02736
[17] Frenkel D., Smit B., “Understanding Molecular Simulation from Algorithms to Applications”, Academic Press, Orlando (2001).
[18] Keizer J., “Statistical Thermodynamics of Non-Equilibrium Processes”, Springer, New York (1987).
[19] Widom B., Some Topics in the Theory of Fluids, Journal of Chemical Physics, 39: 2808-2812 (1963). https://doi.org/10.1063/1.1734110
[20] Gupta A., Chemmpath S., Sanborn M.J., Clark L.A., Snurr R.Q., Object-Oriented Programming Paradigms for Molecular Modeling, Molecular Simulation, 29: 29-46 (2003). https://doi.org/10.1080/0892702031000065719
[21] Taheri S., Shadman M., Soltanabadi A., Ahadi Z., Grand Canonical Monte Carlo Simulation of Hydrogen Physisorption in Li- and K-Doped Single-Walled Silicon Carbide Nanotube, International nano letters, 4: 81-90 (2014). http://dx.doi.org/10.1007/s40089-014-0123-6
 [22] Motallebipour M.S., Karimi-Sabet J., Maghari A., 4He/3He Separation using Oxygen-Functionalized Nanoporous Graphene, Physical Chemistry Chemical Physics, 21: 12414-12422 (2019). https://doi.org/10.1039/C9CP01364D
[23] Izadi M., Maghari A., Zhang W., Duin A.C.T., Reactive Molecular Dynamics Simulation for Isotope-Exchnage Reactions in H/D Systems:ReaxFFHD Development, Journal Chemical Physics, 152: 224111/1-224111/10 (2020). https://doi.org/10.1063/5.0008386
[24] Huang H., Zhnag W., Liu D., Zhong C., Understanding the Effect of Trace Amount of Water on CO2 Capture in Natural Gas Upgrading in Metal−Organic Frameworks: A Molecular Simulation Study, Industrial & Engineering Chemistry Research, 51: 10031-10038 (2012). https://doi.org/10.1021/ie202699r
[25] Mayo S.L., Olafson B.D., Goddard W.A., DREIDING: a Generic Force Field for Molecular Simulations, Journal of Physical Chemistry, 94: 8897-8909 (1990). https://doi.org/10.1021/j100389a010
[26] Darkrim F., Levesque D., Monte Carlo Simulations of Hydrogen Adsorption in Single-Walled Carbon, Journal of Chemical Physics, 109: 4981-4984 (1998). https://doi.org/10.1063/1.477109
[27] Wells B.A., Chaffee A.L., Ewald Summation for Molecular Simulation, Journal of Chemical Theory and Computation, 11: 3684-3695 (2015). https://doi.org/10.1021/acs.jctc.5b00093
[28] Wilmer C.E., Kim K.C., Snurr R.Q., An Extended Charge Equilibration Method, Journal Physical Chemistry Letter, 3: 2506-2511 (2012). https://doi.org/10.1021/jz3008485
[29] Banijamali F.S., Maghari A., Schutz G., Hirscher M., Hydrogen  and Deuterium Separation on Metal Organic Frameworks based on Cu-and Zn-BTC: an Experimental and Theoretical Study, Adsorption-Journal of the International Adsorption Society, 27: 1-18 (2021). https://link.springer.com/article/10.1007/s10450-021-00323-x