بررسی فعالیت و تعیین پارامترهای سینتیکی الکتروکاتالیست پلاتین–کبالت بر پایه نگهدارنده نانوکامپوزیت گرافن-پلی آلیل آمین در واکنش احیای اکسیژن در پیل سوختی پلیمری

نوع مقاله : علمی-پژوهشی

نویسنده

گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه ،ایران

چکیده

در این مطالعه نانوکامپوزیت Pt-Co/PAA/GNP به‌دلیل رفع مشکل بازده و پایداری پایین الکترود کاتد پیل‌های سوختی پلیمری به‌ واسطه استفاده از الکتروکاتالیست تجاری Pt/C در ترکیب لایه کاتالیست مجموعه الکترود و غشای پیل‌های سوختی توسعه یافت. برای این منظور  نخست گرافن اکسید به عنوان ماده نگهدارنده به روش اصلاح شده هامر و آفنمن سنتز شد. سپس گرافن اکسید با پلی آلیل آمین به روش پلمیریزاسیون به روش اتصال عرضی عامل‌دار شد. پس از آن الکتروکاتالیست آلیاژ پلاتین-کبالت توسط روش نوین سنتز پلی ال به کمک امواج مایکروویو بر روی ماده نگهدارنده پخش شد. اندازه‌گیری‌های طیف رامان ساختار گرافیتی صفحه‌های گرافن احیا شده را تایید نمود. نتیجه‌های طیف فروسرخ حضور پلی ­آلیل ­آمین را در ترکیب ماده نگهدارنده نشان داد. پس از بررسی ساختار و ترکیب الکتروکاتالیست‌های Pt-Co/PAA/GNP، Pt/PAA/GNP وPt/C توسط تفرق اشعه ایکس و میکروسکوپ الکترونی روبشی سرانجام کارایی الکترودها با روش‌های الکتروشیمیایی گوناگون از جمله منحنی‌های ولتامتری چرخه‌ای، ولتامتری روبش خطی در واکنش کاهش اکسیژن ارزیابی شدند. نتیجه‌های تفرق اشعه ایکس، اندازه میانگین ذره‌های آلیاژ پلاتین-کبالت پخش شده بر روی نگهدارنده را به تقریب 11 نانومتر نشان داد. تصویرهای میکروسکوپ الکترونی روبشی نشان داد که کاتالیست دو فلزی پلاتین-کبالت در اندازه نانو به طور موفقیت آمیزی روی نانوصفحه‌های گرافن اکسید عامل‌دار شده با پلی ­آلیل ­آمین پخش شده و این ذره‌ها در فیلم به صورت کروی هستند و به خوبی در سطح نگه‌دارنده توزیع شده ­اند. طبق اندازه‌گیری‌های الکتروشیمیایی مساحت سطح فعال الکتروشیمیایی 42/15 مترمربع بر میلی‌گرم پلاتین با بهره‌وری 62 درصد کاتالیست و جریان پیک فعالیت ویژه و جرمی به بزرگی 3345/26 و 7078/1 میلی‌آمپر بر میلی‌گرم پلاتین برای Pt-Co/PAA/GNP به‌دست آمد که قابل مقایسه با مقدارهای به‌دست آمده برای الکترود Pt/PAA/GNP و نمونه تجاری می‌باشد.

کلیدواژه‌ها

موضوعات


[2] Barbir F., "Pem Fuel Cells: Theory and Practice", Academic press, UK, (2013).
[3] Qi Z., Lefebvre M.C., Pickup P.G., Electron and Proton Transport in Gas Diffusion Electrodes Containing Electronically Conductive Proton-Exchange Polymers, Journal of Electroanalytical Chemistry, 459(1): 9-14 (1998).
[4] Wang C., Spendelow J.S., Recent Developments in Pt–Co Catalysts for Proton-Exchange Membrane Fuel Cells, Current Opinion in Electrochemistry, 28: 100715 (2021).
[5] Cheng X., Wang Y., Lu Y., Zheng L., Sun S., Li H., Chen G., Zhang J., Single-Atom Alloy with Pt-Co Dual Sites as an Efficient Electrocatalyst for Oxygen Reduction Reaction, Applied Catalysis B: Environmental, 306: 121112 (2022).
[6] Lee J.D., Jishkariani D., Zhao Y., Najmr S., Rosen D., Kikkawa J.M., Stach E.A., Murray C.B., Tuning the Electrocatalytic Oxygen Reduction Reaction Activity of Pt–Co Nanocrystals by Cobalt Concentration with Atomic-Scale Understanding, ACS applied materials & interfaces, 11(30): 26789-26797 (2019).
[8] افضلی د.، فتحی راد ف.، بررسی عملکرد نانوکاتالیست‌های دوفلزی برای بهبود فرایند اکسایش اتیلن گلیکول و گلیسرول در پیل سوختی، نشریه شیمی و مهندسی شیمی ایران، (3)39: 93 تا 100 (1399).
[9] قنبرلو ح.، روشن ضمیر س.، پرنیان م.ج.، مقایسه فعالیت کاتالیست‌های دو فلزی Fe-Co/Ng و Fe-Co/Mwcntبرای واکنش احیای اکسیژن در کاتد پیل‌های سوختی، نشریه شیمی و مهندسی شیمی ایران،  (2)36: 151 تا 162 (1396).
[10] Zhang J., "Pem Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications", Springer Science & Business Media, (2008).
[11] Hoogers G., "Catalysts for the Proton Exchange Membrane Fuel Cell", CRC Press: Boca Raton, FL, (2003).
[13] Qian Y., Wen W., Adcock P.A., Jiang Z., Hakim N., Saha M.S., Mukerjee S., PtM/C Catalyst Prepared Using Reverse Micelle Method for Oxygen Reduction Reaction in Pem Fuel Cells, The Journal of Physical Chemistry C, 112(4): 1146-1157 (2008).
[14] Huang Q., Yang H., Tang Y., Lu T., Akins D.L., Carbon-Supported Pt–Co Alloy Nanoparticles for Oxygen Reduction Reaction, Electrochemistry Communications, 8(8): 1220-1224 (2006).
[16] Koh S., Yu C., Mani P., Srivastava R., Strasser P., Activity of Ordered and Disordered Pt-Co Alloy Phases for the Electroreduction of Oxygen in Catalysts with Multiple Coexisting Phases, Journal of Power Sources, 172(1): 50-56 (2007).
[17] Schulenburg H., Durst J., Müller E., Wokaun A., Scherer G., Real Surface Area Measurements of Pt3Co/C Catalysts, Journal of Electroanalytical Chemistry, 642(1): 52-60 (2010).
[18] Paulus U., Wokaun A., Scherer G., Schmidt T., Stamenkovic V., Markovic N.M., Ross P., Oxygen Reduction on High Surface Area Pt-Based Alloy Catalysts in Comparison to Well Defined Smooth Bulk Alloy Electrodes, Electrochimica Acta, 47(22): 3787-3798 (2002).
[19] Li X., Liu Y., Zhu J., Tsiakaras P., Shen P.K., Enhanced Oxygen Reduction and Methanol Oxidation Reaction over Self-Assembled Pt-M (M= Co, Ni) Nanoflowers, Journal of colloid and interface science, 607: 1411-1423 (2022).
[20] Liu Z., Yin Y., Yang D., Zhang C., Ming P., Li B., Yang S., Efficient Synthesis of Pt–Co Nanowires as Cathode Catalysts for Proton Exchange Membrane Fuel Cells, RSC Advances, 10(11): 6287-6296 (2020).
[21] Hu B., Yuan J., Zhang J., Shu Q., Guan D., Yang G., Zhou W., Shao Z., High Activity and Durability of a Pt–Cu–Co Ternary Alloy Electrocatalyst and Its Large-Scale Preparation for Practical Proton Exchange Membrane Fuel Cells, Composites Part B: Engineering, 222: 109082 (2021).
[22] Mo R., Zhang X., Chen Z., Huang S., Li Y., Liang L., Tian Z.Q., Shen P.K., Highly Efficient Ptco Nanoparticles on Co–N–C Nanorods with Hierarchical Pore Structure for Oxygen Reduction Reaction, International journal of hydrogen energy, 46(29): 15991-16002 (2021).
[24] Maillard F., Dubau L., Durst J., Chatenet M., André J., Rossinot E., Durability of Pt3Co/C Nanoparticles in a Proton-Exchange Membrane Fuel Cell: Direct Evidence of Bulk Co Segregation to the Surface, Electrochemistry Communications, 12(9): 1161-1164 (2010).
[25] Neyerlin K., Srivastava R., Yu C., Strasser P., Electrochemical Activity and Stability of Dealloyed Pt–Cu and Pt–Cu–Co Electrocatalysts for the Oxygen Reduction Reaction (ORR), Journal of Power Sources, 186(2): 261-267 (2009).
[26] Hu B., Deng X., Zhou L., Dai J., Yang G., Tan W., Zhou W., Shao Z., Facile Synthesis of Synergistic Pt/(Co-N)@C Composites as Alternative Oxygen-Reduction Electrode of Pemfcs with Attractive Activity and Durability, Composites Part B: Engineering, 193: 108012 (2020).
[27] Li M., Zhao Z., Xia Z., Yang Y., Luo M., Huang Y., Sun Y., Chao Y., Yang W., Yang W., Lavender-Like Ga-Doped Pt3Co Nanowires for Highly Stable and Active Electrocatalysis, ACS Catalysis, 10(5): 3018-3026 (2020).
[28] Ramaswamy N., Kumaraguru S., Gu W., Kukreja R.S., Yu K., Groom D., Ferreira P., High-Current Density Durability of Pt/C and PtCo/C Catalysts at Similar Particle Sizes in Pemfcs, Journal of the Electrochemical Society, 168(2): 024519 (2021).
[29] Wang F., Zhang Q., Rui Z., Li J., Liu J., High-Loading Pt–Co/C Catalyst with Enhanced Durability toward the Oxygen Reduction Reaction through Surface Au Modification, ACS applied materials & interfaces, 12(27): 30381-30389 (2020).
[30] Cui Y., Wu Y., Wang Z., Yao X., Wei Y., Kang Y., Du H., Li J., Gan L., Mitigating Metal Dissolution and Redeposition of Pt-Co Catalysts in Pem Fuel Cells: Impacts of Structural Ordering and Particle Size, Journal of the Electrochemical Society, 167(6): 064520 (2020).
[31] Britto P.J., Santhanam K.S., Rubio A., Alonso J.A., Ajayan P.M., Improved Charge Transfer at Carbon Nanotube Electrodes, Advanced Materials, 11(2): 154-157 (1999).
[32] Ji Z., Chen J., Pérez-Page M., Guo Z., Zhao Z., Cai R., Rigby M.T., Haigh S.J., Holmes S.M., Doped Graphene/Carbon Black Hybrid Catalyst Giving Enhanced Oxygen Reduction Reaction Activity with High Resistance to Corrosion in Proton Exchange Membrane Fuel Cells, Journal of Energy Chemistry, 68: 143-153 (2022).
[33] Boyaci San F.G., Dursun S., Yazici M.S., PtCo on Continuous‐Phase Graphene as Pem Fuel Cell Catalyst, International Journal of Energy Research, 45(2): 1673-1684 (2021).
[34] Li D., Müller M.B., Gilje S., Kaner R.B., Wallace G.G., Processable Aqueous Dispersions of Graphene Nanosheets, Nature nanotechnology, 3(2): 101 (2008).
[35] Park S., An J., Piner R.D., Jung I., Yang D., Velamakanni A., Nguyen S.T., Ruoff R.S., Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets, Chemistry of materials, 20(21): 6592-6594 (2008).
[36] Fan X., Peng W., Li Y., Li X., Wang S., Zhang G., Zhang F., Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation, Advanced Materials, 20(23):  4490-4493 (2008).
[37] Lee K.R., Lee K.U., Lee J.W., Ahn B.T., Woo S.I., Electrochemical Oxygen Reduction on Nitrogen Doped Graphene Sheets in Acid Media, Electrochemistry Communications, 12(8): 1052-1055 (2010).
[38] Li Y., Wang J., Li X., Geng D., Banis M.N., Li R., Sun X., Nitrogen-Doped Graphene Nanosheets as Cathode Materials with Excellent Electrocatalytic Activity for High Capacity Lithium-Oxygen Batteries, Electrochemistry Communications, 18: 12-15 (2012).
[39] Qu L., Liu Y., Baek J.-B., Dai L., Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells, ACS nano, 4(3): 1321-1326 (2010).
[40] Long D., Li W., Ling L., Miyawaki J., Mochida I., Yoon S.-H., Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide, Langmuir, 26(20): 16096-16102 (2010).
[41] Shao Y., Zhang S., Wang C., Nie Z., Liu J., Wang Y., Lin Y., Highly Durable Graphene Nanoplatelets Supported Pt Nanocatalysts for Oxygen Reduction, Journal of Power Sources, 195(15): 4600-4605 (2010).
[43] Wang H., Hao Q., Yang X., Lu L., Wang X., Graphene Oxide Doped Polyaniline for Supercapacitors, Electrochemistry Communications, 11(6): 1158-1161 (2009).
[44] Gómez H., Ram M.K., Alvi F., Villalba P., Stefanakos E.L., Kumar A., Graphene-Conducting Polymer Nanocomposite as Novel Electrode for Supercapacitors, Journal of Power Sources, 196(8): 4102-4108 (2011).
[45] Zhao Y., Zhan L., Tian J., Nie S., Ning Z., Enhanced Electrocatalytic Oxidation of Methanol on Pd/Polypyrrole–Graphene in Alkaline Medium, Electrochimica Acta, 56(5): 1967-1972 (2011).
[46] Wang J., Xu Y., Zhu J., Ren P., Electrochemical in Situ Polymerization of Reduced Graphene Oxide/Polypyrrole Composite with High Power Density, Journal of Power Sources, 208: 138-143 (2012).
[47] Cho K.M., Kim K.H., Park K., Kim C., Kim S., Al-Saggaf A., Gereige I., Jung H.-T., Amine-Functionalized Graphene/Cds Composite for Photocatalytic Reduction of CO2, ACS Catalysis, 7(10): 7064-7069 (2017).
[48] Wietecha M.S., Zhu J., Gao G., Wang N., Feng H., Gorring M.L., Kasner M.L., Hou S., Platinum Nanoparticles Anchored on Chelating Group-Modified Graphene for Methanol Oxidation, Journal of Power Sources, 198:  30-35 (2012).
[49] Yang S.-Y., Chang K.-H., Lee Y.-F., Ma C.-C.M., Hu C.-C., Constructing a Hierarchical Graphene–Carbon Nanotube Architecture for Enhancing Exposure of Graphene and Electrochemical Activity of Pt Nanoclusters, Electrochemistry Communications, 12(9): 1206-1209 (2010).
[50] Jha N., Jafri R.I., Rajalakshmi N., Ramaprabhu S., Graphene-Multi Walled Carbon Nanotube Hybrid Electrocatalyst Support Material for Direct Methanol Fuel Cell, International journal of hydrogen energy, 36(12): 7284-7290 (2011).
[52] Mai Y., Shi S., Zhang D., Lu Y., Gu C., Tu J., NiO–Graphene Hybrid as an Anode Material for Lithium Ion Batteries, Journal of Power Sources, 204: 155-161 (2012).
[53] Williams G., Seger B., Kamat P.V., TiO2-Graphene Nanocomposites. Uv-Assisted Photocatalytic Reduction of Graphene Oxide, ACS nano, 2(7): 1487-1491 (2008).
[54] Cheng P., Yang Z., Wang H., Cheng W., Chen M., Shangguan W., Ding G., TiO2–Graphene Nanocomposites for Photocatalytic Hydrogen Production from Splitting Water, International journal of hydrogen energy, 37(3): 2224-2230 (2012).
[55] Kioussis D.R., Smith D.F., Kofinas P., Ammonium Perchlorate–Binding Poly (Allylamine Hydrochloride) Hydrogels for Wastewater Remediation, Journal of applied polymer science, 80(11): 2073-2083 (2001).
[56] Moby V., Boura C., Kerdjoudj H., Voegel J.-C., Marchal L., Dumas D., Schaaf P., Stoltz J.-F., Menu P., Poly (Styrenesulfonate)/Poly (Allylamine) Multilayers: A Route to Favor Endothelial Cell Growth on Expanded Poly (Tetrafluoroethylene) Vascular Grafts, Biomacromolecules, 8(7): 2156-2160 (2007).
[57] Dyer M.A., Ainslie K.M., Pishko M.V., Protein Adhesion on Silicon-Supported Hyperbranched Poly (Ethylene Glycol) and Poly (Allylamine) Thin Films, Langmuir, 23(13): 7018-7023 (2007).
[59] Sukhanova A., Devy J., Venteo L., Kaplan H., Artemyev M., Oleinikov V., Klinov D., Pluot M., Cohen J.H., Nabiev I., Biocompatible Fluorescent Nanocrystals for Immunolabeling of Membrane Proteins and Cells, Analytical biochemistry, 324(1): 60-67 (2004).
[60] Crisante F., Francolini I., Bellusci M., Martinelli A., D’Ilario L., Piozzi A., Antibiotic Delivery Polyurethanes Containing Albumin and Polyallylamine Nanoparticles, european journal of pharmaceutical sciences, 36(4-5): 555-564 (2009).
[62] Taladriz-Blanco P., Rodríguez-Lorenzo L., Sanles-Sobrido M., Hervés P., Correa-Duarte M.A., Alvarez-Puebla R.A., Liz-Marzán L.M., Sers Study of the Controllable Release of Nitric Oxide from Aromatic Nitrosothiols on Bimetallic, Bifunctional Nanoparticles Supported on Carbon Nanotubes, ACS applied materials & interfaces, 1(1): 56-59 (2008).
[63] Grzelczak M., Correa‐Duarte M.A., Salgueiriño‐Maceira V., Rodríguez‐González B., Rivas J., Liz‐Marzán L.M., Pt‐Catalyzed Formation of Ni Nanoshells on Carbon Nanotubes, Angewandte Chemie International Edition, 46(37): 7026-7030 (2007).
[64] Olek M., Hilgendorff M., Giersig M., A Simple Route for the Attachment of Colloidal Nanocrystals to Noncovalently Modified Multiwalled Carbon Nanotubes, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(1): 83-85 (2007).
[65] Tóháti H.M., Botka B., Németh K., Pekker Á., Hackl R., Kamarás K., Infrared and Raman Investigation of Carbon Nanotube‐Polyallylamine Hybrid Systems, physica status solidi (b), 247(11‐12): 2884-2886 (2010).
[66] Park S., Dikin D.A., Nguyen S.T., Ruoff R.S., Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine, The Journal of Physical Chemistry C, 113(36): 15801-15804 (2009).
[67] Wang G., Shen X., Wang B., Yao J., Park J., Synthesis and Characterisation of Hydrophilic and Organophilic Graphene Nanosheets, Carbon, 47(5): 1359-1364 (2009).
[68] Morrison R., Boyd R., "Organic Chemistry", 6th, Englewood Cliffs, NJ: Prentice Hall, (1992).
[70] D'Urso L., Compagnini G., Puglisi O., Scandurra A., Cataliotti R.S., Vibrational and Photoelectron Investigation of Amorphous Fluorinated Carbon Films, The Journal of Physical Chemistry C, 111(46): 17437-17441 (2007).
[71] Park S., Ruoff R.S., Chemical Methods for the Production of Graphenes, Nature nanotechnology, 4(4): 217-224 (2009).
[72] Stankovich S., Piner R.D., Chen X., Wu N., Nguyen S.T., Ruoff R.S., Stable Aqueous Dispersions of Graphitic Nanoplatelets Via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly (Sodium 4-Styrenesulfonate), Journal of Materials Chemistry, 16(2): 155-158 (2006).
[73] Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S., Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, 45(7): 1558-1565 (2007).
[74] Park S., An J., Jung I., Piner R.D., An S.J., Li X., Velamakanni A., Ruoff R.S., Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents, Nano Letters, 9(4): 1593-1597 (2009).
[75] Hassan H.M., Abdelsayed V., Abd El Rahman S.K., AbouZeid K.M., Terner J., El-Shall M.S., Al-Resayes S.I., El-Azhary A.A., Microwave Synthesis of Graphene Sheets Supporting Metal Nanocrystals in Aqueous and Organic Media, Journal of Materials Chemistry, 19(23): 3832-3837 (2009).
[77] Berciaud S., Ryu S., Brus L.E., Heinz T.F., Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers, Nano Letters, 9(1): 346-352 (2008).
[78] Dresselhaus M.S., Jorio A., Hofmann M., Dresselhaus G., Saito R., Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Letters, 10(3): 751-758 (2010).
[80] Zhu Y., Murali S., Stoller M.D., Velamakanni A., Piner R.D., Ruoff R.S., Microwave Assisted Exfoliation and Reduction of Graphite Oxide for Ultracapacitors, Carbon, 48(7): 2118-2122 (2010).
[81] Tryba B., Morawski A.W., Inagaki M., Preparation of Exfoliated Graphite by Microwave Irradiation, Carbon, 43(11): 2417-2419 (2005).
[82] Falcao E.H., Blair R.G., Mack J.J., Viculis L.M., Kwon C.-W., Bendikov M., Kaner R.B., Dunn B.S., Wudl F., Microwave Exfoliation of a Graphite Intercalation Compound, Carbon, 45(6): 1367-1369 (2007).
[83] Culity B., Stock S., Elements of X-Ray Diffraction, Edison Wesley, London, UK, (1978).
[84] Beard B.C., Ross P.N., The Structure and Activity of Pt‐Co Alloys as Oxygen Reduction Electrocatalysts, Journal of the Electrochemical Society, 137(11): 3368-3374 (1990).
[85] Pozio A., De Francesco M., Cemmi A., Cardellini F., Giorgi L., Comparison of High Surface Pt/C Catalysts by Cyclic Voltammetry, Journal of Power Sources, 105(1): 13-19 (2002).
[86] Lim B., Jiang M., Camargo P.H., Cho E.C., Tao J., Lu X., Zhu Y., Xia Y., Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction, science, 324(5932): 1302-1305 (2009).
[87] Salgado J.R.C., Antolini E., Gonzalez E.R., Carbon Supported Pt–Co Alloys as Methanol-Resistant Oxygen-Reduction Electrocatalysts for Direct Methanol Fuel Cells, Applied Catalysis B: Environmental, 57(4): 283-290 (2005).
[88] Zignani S.C., Antolini E., Gonzalez E.R., Evaluation of the Stability and Durability of Pt and Pt–Co/C Catalysts for Polymer Electrolyte Membrane Fuel Cells, Journal of Power Sources, 182(1): 83-90 (2008).
[89] Mustain W.E., Kepler K., Prakash J., Copdx Oxygen Reduction Electrocatalysts for Polymer Electrolyte Membrane and Direct Methanol Fuel Cells, Electrochimica Acta, 52(5): 2102-2108 (2007).
[90] Jiang L., Sun G., Sun S., Liu J., Tang S., Li H., Zhou B., Xin Q., Structure and Chemical Composition of Supported Pt–Sn Electrocatalysts for Ethanol Oxidation, Electrochimica Acta, 50(27): 5384-5389 (2005).
[91] Antolini E., Salgado J., Giz M., Gonzalez E., Effects of Geometric and Electronic Factors on Orr Activity of Carbon Supported Pt–Co Electrocatalysts in Pem Fuel Cells, International journal of hydrogen energy, 30(11): 1213-1220 (2005).
[92] Horwood E., "Instrumental Methods in Electrochemistry", (1985).
[93] Higuchi E., Uchida H., Watanabe M., Effect of Loading Level in Platinum-Dispersed Carbon Black Electrocatalysts on Oxygen Reduction Activity Evaluated by Rotating Disk Electrode, Journal of Electroanalytical Chemistry, 583(1): 69-76 (2005).
[94] Van Brussel M., Kokkinidis G., Vandendael I., Buess-Herman C., High Performance Gold-Supported Platinum Electrocatalyst for Oxygen Reduction, Electrochemistry Communications, 4(10): 808-813 (2002).
[95] Van Brussel M., Kokkinidis G., Hubin A., Buess-Herman C., Oxygen Reduction at Platinum Modified Gold Electrodes, Electrochimica Acta, 48(25): 3909-3919 (2003).
[96] Qiao J., Lin R., Li B., Ma J., Liu J., Kinetics and Electrocatalytic Activity of Nanostructured Ir–V/C for Oxygen Reduction Reaction, Electrochimica Acta, 55(28): 8490-8497 (2010).
[97] Wang J., "Analytical Electrochemistry", Wiley, (2006).
[98] El-Deab M.S., Ohsaka T., Hydrodynamic Voltammetric Studies of the Oxygen Reduction at Gold Nanoparticles-Electrodeposited Gold Electrodes, Electrochimica Acta, 47(26): 4255-4261 (2002).